scispace - formally typeset
Search or ask a question

Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit: The Gaussian Case

TL;DR: In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.
Abstract: This report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(mln d) random linear measurements of that signal. This is a massive improvement over previous results, which require O(m2) measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems.

Content maybe subject to copyright    Report

Citations
More filters
01 Jan 2010
TL;DR: In this paper, a survey of the major practical algorithms for sparse approximation is presented, focusing on computational issues, circumstances in which individual methods tend to perform well, and theoretical guarantees available.
Abstract: The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statis- tics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications.

954 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of sparse representation is provided and an experimentally comparative study of these sparse representation algorithms was presented, which could sufficiently reveal the potential nature of the sparse representation theory.
Abstract: Sparse representation has attracted much attention from researchers in fields of signal processing, image processing, computer vision, and pattern recognition. Sparse representation also has a good reputation in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. The main purpose of this paper is to provide a comprehensive study and an updated review on sparse representation and to supply guidance for researchers. The taxonomy of sparse representation methods can be studied from various viewpoints. For example, in terms of different norm minimizations used in sparsity constraints, the methods can be roughly categorized into five groups: 1) sparse representation with $l_{0}$ -norm minimization; 2) sparse representation with $l_{p}$ -norm ( $0 ) minimization; 3) sparse representation with $l_{1}$ -norm minimization; 4) sparse representation with $l_{2,1}$ -norm minimization; and 5) sparse representation with $l_{2}$ -norm minimization. In this paper, a comprehensive overview of sparse representation is provided. The available sparse representation algorithms can also be empirically categorized into four groups: 1) greedy strategy approximation; 2) constrained optimization; 3) proximity algorithm-based optimization; and 4) homotopy algorithm-based sparse representation. The rationales of different algorithms in each category are analyzed and a wide range of sparse representation applications are summarized, which could sufficiently reveal the potential nature of the sparse representation theory. In particular, an experimentally comparative study of these sparse representation algorithms was presented.

925 citations

Journal ArticleDOI
TL;DR: The Homotopy method is applied to the underdetermined lscr1-minimization problem min parxpar1 subject to y=Ax and is shown to run much more rapidly than general-purpose LP solvers when sufficient sparsity is present, implying that homotopy may be used to rapidly decode error-correcting codes in a stylized communication system with a computational budget constraint.
Abstract: The minimum lscr1-norm solution to an underdetermined system of linear equations y=Ax is often, remarkably, also the sparsest solution to that system. This sparsity-seeking property is of interest in signal processing and information transmission. However, general-purpose optimizers are much too slow for lscr1 minimization in many large-scale applications.In this paper, the Homotopy method, originally proposed by Osborne et al. and Efron et al., is applied to the underdetermined lscr1-minimization problem min parxpar1 subject to y=Ax. Homotopy is shown to run much more rapidly than general-purpose LP solvers when sufficient sparsity is present. Indeed, the method often has the following k-step solution property: if the underlying solution has only k nonzeros, the Homotopy method reaches that solution in only k iterative steps. This k-step solution property is demonstrated for several ensembles of matrices, including incoherent matrices, uniform spherical matrices, and partial orthogonal matrices. These results imply that Homotopy may be used to rapidly decode error-correcting codes in a stylized communication system with a computational budget constraint. The approach also sheds light on the evident parallelism in results on lscr1 minimization and orthogonal matching pursuit (OMP), and aids in explaining the inherent relations between Homotopy, least angle regression (LARS), OMP, and polytope faces pursuit.

921 citations

Journal ArticleDOI
TL;DR: The developed theory provides a successful practice of extension of the well- known Moreau's proximity forward-backward splitting theory to the L1/2 regularization case and verify the convergence of the iterative half thresholding algorithm and provide a series of experiments to assess performance.
Abstract: The special importance of L1/2 regularization has been recognized in recent studies on sparse modeling (particularly on compressed sensing). The L1/2 regularization, however, leads to a nonconvex, nonsmooth, and non-Lipschitz optimization problem that is difficult to solve fast and efficiently. In this paper, through developing a threshoding representation theory for L1/2 regularization, we propose an iterative half thresholding algorithm for fast solution of L1/2 regularization, corresponding to the well-known iterative soft thresholding algorithm for L1 regularization, and the iterative hard thresholding algorithm for L0 regularization. We prove the existence of the resolvent of gradient of ||x||1/21/2, calculate its analytic expression, and establish an alternative feature theorem on solutions of L1/2 regularization, based on which a thresholding representation of solutions of L1/2 regularization is derived and an optimal regularization parameter setting rule is formulated. The developed theory provides a successful practice of extension of the well- known Moreau's proximity forward-backward splitting theory to the L1/2 regularization case. We verify the convergence of the iterative half thresholding algorithm and provide a series of experiments to assess performance of the algorithm. The experiments show that the half algorithm is effective, efficient, and can be accepted as a fast solver for L1/2 regularization. With the new algorithm, we conduct a phase diagram study to further demonstrate the superiority of L1/2 regularization over L1 regularization.

909 citations

Book
01 Jan 2006
TL;DR: It is shown that for systems with ‘typical’/‘random’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra, and rigorously derive a conditioned Gaussian distribution for the matched filtering coefficients at each stage of the procedure.
Abstract: Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NP-hard in general. We show here that for systems with ‘typical’/‘random’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our proposal, Stagewise Orthogonal Matching Pursuit (StOMP), successively transforms the signal into a negligible residual. Starting with initial residual r0 = y, at the s-th stage it forms the ‘matched filter’ Φ rs−1, identifies all coordinates with amplitudes exceeding a specially-chosen threshold, solves a least-squares problem using the selected coordinates, and subtracts the leastsquares fit, producing a new residual. After a fixed number of stages (e.g. 10), it stops. In contrast to Orthogonal Matching Pursuit (OMP), many coefficients can enter the model at each stage in StOMP while only one enters per stage in OMP; and StOMP takes a fixed number of stages (e.g. 10), while OMP can take many (e.g. n). StOMP runs much faster than competing proposals for sparse solutions, such as `1 minimization and OMP, and so is attractive for solving large-scale problems. We use phase diagrams to compare algorithm performance. The problem of recovering a k-sparse vector x0 from (y, Φ) where Φ is random n × N and y = Φx0 is represented by a point (n/N, k/n) in this diagram; here the interesting range is k < n < N . For n large, StOMP correctly recovers (an approximation to) the sparsest solution of y = Φx over a region of the sparsity/indeterminacy plane comparable to the region where `1 minimization is successful. In fact, StOMPoutperforms both `1 minimization and OMP for extremely underdetermined problems. We rigorously derive a conditioned Gaussian distribution for the matched filtering coefficients at each stage of the procedure and rigorously establish a large-system limit for the performance variables of StOMP . We precisely calculate large-sample phase transitions; these provide asymptotically precise limits on the number of samples needed for approximate recovery of a sparse vector by StOMP . We give numerical examples showing that StOMP rapidly and reliably finds sparse solutions in compressed sensing, decoding of error-correcting codes, and overcomplete representation.

898 citations

References
More filters
Book
01 Jan 1983

34,729 citations

Book
D.L. Donoho1
01 Jan 2004
TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

Journal ArticleDOI
TL;DR: Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions.
Abstract: The time-frequency and time-scale communities have recently developed a large number of overcomplete waveform dictionaries --- stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for decomposition have been proposed, including the method of frames (MOF), Matching pursuit (MP), and, for special dictionaries, the best orthogonal basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions. We give examples exhibiting several advantages over MOF, MP, and BOB, including better sparsity and superresolution. BP has interesting relations to ideas in areas as diverse as ill-posed problems, in abstract harmonic analysis, total variation denoising, and multiscale edge denoising. BP in highly overcomplete dictionaries leads to large-scale optimization problems. With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program of size 8192 by 212,992. Such problems can be attacked successfully only because of recent advances in linear programming by interior-point methods. We obtain reasonable success with a primal-dual logarithmic barrier method and conjugate-gradient solver.

9,950 citations

Journal ArticleDOI
TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Abstract: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive time-frequency transform. They derive a signal energy distribution in the time-frequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. They compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser see (IEEE Trans. Informat. Theory, vol. 38, Mar. 1992). >

9,380 citations

Journal ArticleDOI
TL;DR: A publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates is described.
Abstract: The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS modification efficiently implements Forward Stagewise linear regression, another promising new model selection method; this connection explains the similar numerical results previously observed for the Lasso and Stagewise, and helps us understand the properties of both methods, which are seen as constrained versions of the simpler LARS algorithm. (3) A simple approximation for the degrees of freedom of a LARS estimate is available, from which we derive a Cp estimate of prediction error; this allows a principled choice among the range of possible LARS estimates. LARS and its variants are computationally efficient: the paper describes a publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates.

7,828 citations