scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Significance of CSF NfL and tau in ALS

TL;DR: The findings that higher CSF NfL levels and a reduced ptau/ttau ratio are more associated with clinical UMN involvement and with reduced CST FA offer strong converging evidence that both are markers of central motor degeneration.
Abstract: Cerebrospinal fluid (CSF) neurofilament light chain (NfL) has emerged as putative diagnostic biomarker in amyotrophic lateral sclerosis (ALS), but it remains a matter of debate, whether CSF total tau (ttau), tau phosphorylated at threonine 181 (ptau) and the ptau/ttau ratio could serve as diagnostic biomarker in ALS as well Moreover, the relationship between CSF NfL and tau measures to further axonal and (neuro)degeneration markers still needs to be elucidated Our analysis included 89 ALS patients [median (range) age 63 (33-83) years, 61% male, disease duration 10 (02-190) months] and 33 age- and sex-matched disease controls [60 (32-76), 49%] NfL was higher and the ptau/ttau ratio was lower in ALS compared to controls [8343 (1795-35,945) pg/ml vs 1193 (612-2616), H(1) = 708, p < 0001; mean (SD) 017 (004) vs 02 (003), F(1) = 143, p < 0001], as well as in upper motor neuron dominant (UMND, n = 10) compared to classic (n = 46) or lower motor neuron dominant ALS [n = 31; for NfL: 16,076 (7447-35,945) vs 8205 (2651-35,138) vs 8057 (1795-34,951)], Z ≥ 25, p ≤ 001; for the ptau/ttau ratio: [013 (004) vs 017 (004) vs 018 (003), p ≤ 002] In ALS, NfL and the ptau/ttau ratio were related to corticospinal tract (CST) fractional anisotropy (FA) and radial diffusivity (ROI-based approach and whole-brain voxelwise analysis) Factor analysis of mixed data revealed a co-variance pattern between NfL (factor load - 06), the ptau/ttau ratio (07), CST FA (08) and UMND ALS phenotype (- 28) NfL did not relate to any further neuroaxonal injury marker (brain volumes, precentral gyrus thickness, peripheral motor amplitudes, sonographic cross-sectional nerve area), but a lower ptau/ttau ratio was associated with whole-brain gray matter atrophy and widespread white matter integrity loss Higher NfL baseline levels were associated with greater UMN disease burden, more rapid disease progression, a twofold to threefold greater hazard of death and shorter survival times The findings that higher CSF NfL levels and a reduced ptau/ttau ratio are more associated with clinical UMN involvement and with reduced CST FA offer strong converging evidence that both are markers of central motor degeneration Furthermore, NfL is a marker of poor prognosis, while a low ptau/ttau ratio indicates extramotor pathology in ALS

Summary (2 min read)

Clinical phenotypes

  • Clinical phenotypes were classified according to recent specifications [3, 4].
  • The diagnostic criteria for PLS required a period of at least 4 years in which there were only UMN signs on examination.
  • Other conditions that mimic PLS, such as hereditary spastic paraplegia (HSP) were excluded by appropriate investigations [7].
  • To differentiate this condition from early limb-onset ALS, the authors specified that LMN involvement must be the predominant finding for at least 12 months after the symptom onset.

Data availability

  • CSF data were on hand for all ALS patients, of those 89 cases, 58 (69%) and 13 (15%) patients, respectively, have already been included in their previous cross-sectional and longitudinal peripheral nerve sonography ALS studies [3, 9, 10].
  • Out of the 84 patients with available baseline ALSFRS-R scores, longitudinal ALSFRS-R scoring was performed in n=71 cases (80%) with at least two follow-ups and n=46 cases (52%) with at least three follow-ups.

CSF measures

  • CSF biomarkers were measured with commercially available ELISA (for NfL: NF-light® ELISA, IBL International GmbH, Hamburg, Germany; for total tau [ttau] or ptau: Innotest hTauAg or Innotest p-Tau, Innogenetics, Ghent, Belgium), following the instructions provided by the manufacturer.
  • To assess the performance of the NfL assay the authors determined the intra-assay coefficient of variability (CV; =reproducibility, within-assay performance) and the inter-assay CV (=repeatability, between-assay performance) [11].
  • CV was calculated using the root mean square method, described e.g. in [19].
  • CSF samples of 2 controls and four ALS patients were measured twice on the first assay, and procedure was repeated 24 hours later taking a second assay.
  • Detailed CSF NfL values of each sample are given in Supplemental Table 1.

3T MRI measures of the brain

  • All MRI scans were performed on the same Siemens Verio 3 T system (Siemens Medical Systems, Erlangen, Germany) with a 32-channel head coil.
  • Diffusion gradients were applied along 30 non-collinear directions with b = 1000 s/mm2, one scan without diffusion weighting (b = 0 s/mm2) was also acquired.
  • A T2-weighted FLASH sequence was acquired during the same session to investigate the presence of white matter hyperintensities.
  • The original b-matrix was reoriented using an in-house script to adjust it for rotations induced by the previous transformations.
  • The analyses were performed employing tract-based spatial statistics [16] that warped all the FA images to the FMRIB58_FA standard template (FMRIB; resolution: 1×1×1 mm3) in MNI152 space using FSL's non-linear registration tool (FNIRT v1.0).

Results

  • Relationship between CSF NfL and DTI metrics across ALS phenotypes.
  • Out of the whole sample n=29 classic ALS, n=14 LMND ALS and n=6 UMND ALS cases had available both, measures of CSF NfL and DTI metrics.
  • The distribution of observed survival times over measured NfL levels is shown in Supplemental Figure 3A for the distinct phenotypes.
  • The factor loads of [-0.7, 0.7] and [0.7, 0.7] lead to factor 1 describing constellations with low NfL values and comparatively longer survival times and factor 2 pointing to individuals with longer survival times despite higher NfL values.
  • One may thus hypothesize that these results point to the existence of distinct groups displaying high CSF NfL: UMND ALS with longer survival despite high CSF NfL and ALS patients with combined UMN and LMN pathology (classic disease phenotype), high CSF NfL and worse prognosis.

Subject code A1M1 A1M2 A2M1 A2M2

  • Unless otherwise reported, medians and are given.
  • ALS, amyotrophic lateral sclerosis; ALSFRS-R, revised ALS functional rating scale; LMND, lower motor neuron dominant; UMND, upper motor neuron dominant; *ANOVA, #binary logistic regression analysis.
  • P-values <0.05 were deemed to be statistically significant.

Figures

  • Availability of multimodal data in the ALS sample Constellations of data availability for the various measurements within the ALS sample.
  • CSF, clinical and genetic measures are colored in blue, measures to obtain PNS neuroaxonal injury are colored in green and measures to obtain CNS neuroaxonal injury are colored in orange.
  • Scatter plot of observed survival times vs. NfL measurement.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

Supplemental
Methods
ALS sample
Penn UMN score
The Penn UMN score ranged from 0 to 32 points and comprised items from the bulbar
segment (0-4 points) and from each of the four limbs (0-7 points per limb) [1]. In detail, for
the bulbar segment, single points were allocated for an abnormal jaw-jerk reflex, an
abnormal facial reflex, the existence of the palmomental sign and the existence of an
abnormal pseudobulbar affect. For the upper extremity subscore, single points were given for
each, pathologically brisk biceps reflex, triceps reflex, presence of finger flexors, Hoffmann’s
sign or the existence of a clonus anywhere in the limb. Additionally, spasticity was rated
according to the Ashworth Spasticity Scale (0-2 points, with adding 0 points for Ashworth 1
(normal tone), 1 point for Ashworth 2-3, 2 points for Ashworth 4-5) [2]. For the lower
extremity subscore, single points were allocated for each, pathologically brisk plantar reflex,
ancle reflex, crossed adduction, Babinski’s sign and a clonus anywhere in the limb. For the
lower extremity, spasticity was rated the same way as described for the upper extremity
subscore.
Clinical phenotypes
Clinical phenotypes were classified according to recent specifications [3, 4]. At the time of
study inclusion, a variable combination of UMN signs (spastic tone, clonus, etc.) and LMN
signs (wasting, weakness, fasciculations) in the upper and lower limbs were found in those
designated as classic ALS who, in turn, fulfilled the El Escorial criteria of definite or probable
ALS. UMND ALS patients had either no LMN signs, or, if present (1) they were restricted to
only 1 neuraxis level (bulbar, cervical, or lumbosacral); and (2) electromyographic
abnormalities were limited to sparse fibrillation potentials/positive sharp waves or minor
enlargement of motor unit potentials in 1 or at most 2 muscles [5, 6] for at least 12 months
after symptom onset. The diagnostic criteria for PLS required a period of at least 4 years in

which there were only UMN signs on examination. Other conditions that mimic PLS, such as
hereditary spastic paraplegia (HSP) were excluded by appropriate investigations [7]. All
patients with LMND ALS had clinical and electrophysiological evidence of sporadic
progressive pure LMN involvement in 1 or more regions without clinical signs of UMN
dysfunction. To differentiate this condition from early limb-onset ALS, we specified that LMN
involvement must be the predominant finding for at least 12 months after the symptom onset.
LMND ALS comprised patients with flail arm phenotype (n=4), flail leg phenotype (n=2) and
progressive muscular atrophy (n=3). Other LMN diseases, such as multifocal motor
neuropathy, spinal muscular atrophy, monomelic amyotrophy, Kennedy’s disease, and post-
polio syndrome, were excluded by extensive clinical and laboratory examinations [7, 8].
Data availability
CSF data were on hand for all ALS patients, of those 89 cases, 58 (69%) and 13 (15%)
patients, respectively, have already been included in our previous cross-sectional and
longitudinal peripheral nerve sonography ALS studies [3, 9, 10]. Out of the 84 patients with
available baseline ALSFRS-R scores, longitudinal ALSFRS-R scoring was performed in n=71
cases (80%) with at least two follow-ups and n=46 cases (52%) with at least three follow-ups.
Survival data could be identified in n=86 subjects (97%) with n=53 (62%) having died after a
median survival time of 35.8 months. C9orf72 and SOD1 status was available in n=64
patients (72%), comprising n=6 (9%) suffering from familial ALS (n=2 with C9orf72 positivity
and n=4 with SOD1 positivity). Nerve CSA was available in n=72 (81%) cases, CMAP
amplitudes in n=65 (73%) and MPRAGE images in n=61 (69%) subjects of whom n=51
(57%) had also cerebral DTI measures. Constellations of individual data availability in ALS
are indicated in Supplemental Figure 1.
CSF measures
Within 20 minutes of lumbar puncture, CSF samples were centrifuged at 4 C, aliquoted and
stored at -80 C until analysis. CSF biomarkers were measured with commercially available
ELISA (for NfL: NF-light® ELISA, IBL International GmbH, Hamburg, Germany; for total tau

[ttau] or ptau: Innotest hTauAg or Innotest p-Tau, Innogenetics, Ghent, Belgium), following
the instructions provided by the manufacturer.
To assess the performance of the NfL assay we determined the intra-assay coefficient of
variability (CV; =reproducibility, within-assay performance) and the inter-assay CV
(=repeatability, between-assay performance) [11]. CV was calculated using the root mean
square method, described e.g. in [19]. CSF samples of 2 controls and four ALS patients were
measured twice on the first assay, and procedure was repeated 24 hours later taking a
second assay. Intra-assay CV of duplicates was 3.1%, inter-assay CV was 10.6%, which is
in line with the literature [11]. Detailed CSF NfL values of each sample are given in
Supplemental Table 1.
3T MRI measures of the brain
All MRI scans were performed on the same Siemens Verio 3 T system (Siemens Medical
Systems, Erlangen, Germany) with a 32-channel head coil. 3D MPRAGE images were
acquired using the following parameters: acquisition time 9 min, 20 s, repetition time 2500
ms, echo time 4.82 ms, inversion time 1100 ms, flip angle 7 °, voxel size = 1×1×1 mm
3
. DWI
data were acquired with a resolution of 2×2×2 mm
3
. Diffusion gradients were applied along
30 non-collinear directions with b = 1000 s/mm
2
, one scan without diffusion weighting (b =
0 s/mm
2
) was also acquired. The data were averaged across two repetitions (for full details
see [12, 13]). A T2-weighted FLASH sequence was acquired during the same session to
investigate the presence of white matter hyperintensities.
Diffusion tensor imaging analysis
Diffusion tensor images were processed using the FMRIB software library (FSL [14];
Analysis Group, FMRIB, University of Oxford, UK). In brief, each diffusion weighted volume
was affined-aligned to its corresponding b0 image using FSL's linear image co-registration
tool (FLIRT v5.4.2) to correct for motion artifacts and eddy-current distortions. Using FSL’s
brain-extraction tool (BET v2.1) a binary brain mask of each b0 image was generated, with
fractional threshold f = 0.1 and vertical gradient g = 0. The original b-matrix was reoriented

using an in-house script to adjust it for rotations induced by the previous transformations.
FSL's diffusion toolbox (FDT v2.0) was used to fit a single tensor model, taking a weighted
linear approach, and to compute the maps of DTI scalars (FA, mean diffusivity (MD), radial
diffusivity (RD), axial diffusivity (AD)). Load of white matter lesion was evaluated on a T2-
weighted FLASH sequence employing the Fazekas scale [15].
The analyses were performed employing tract-based spatial statistics [16] that warped all the
FA images to the FMRIB58_FA standard template (FMRIB; resolution: 1×1×1 mm
3
) in
MNI152 space using FSL's non-linear registration tool (FNIRT v1.0). The warped FA maps
were averaged to create a mean FA template, from which the FA skeleton was computed,
imposing an FA threshold of 0.2. All the FA maps as well as the maps of the other DTI
scalars were then projected onto the skeleton. The whole-brain regression analysis was
conducted employing the Randomise tool version 2.9 available in FSL with 5000
permutations, threshold-free cluster enhancement (TFCE) and 2D optimization for tract-
based DTI analysis. The CST region of interest (ROI) analysis was performed using the CST
mask (bilateral) included in the JHU white matter tractography atlas available in FSL,
thresholded at 0.5. The JHU-CST mask was further intersected with the study- specific
skeleton and the resulting mask was used for extracting the median values of DTI scalars in
the CST for each participant.
Cortical thickness and volumetric measures
For each patient cortical thickness of the bilateral precentral gyrus was obtained from the
native-space MPRAGE scans using the automated FreeSurfer 6.0 parcellation [18]. Total
brain volume (TBV), GM volume (GMV) and WM volume (WMV), normalized for head size,
were estimated using the SIENAX algorithm from the SIENA-package of FSL v5.0.
Results
Relationship between CSF NfL and DTI metrics across ALS phenotypes

Out of the whole sample n=29 classic ALS, n=14 LMND ALS and n=6 UMND ALS cases had
available both, measures of CSF NfL and DTI metrics. Unfortunately, in our cohort the group
of LMND ALS and UMND ALS was too small, lacking the power to perform phenotype-wise
analysis. However, correlation between DTI metrics in the CST and NfL level was present
also when restricting the analysis to the classic ALS cases (NfL and FA: rho=-0.4, p=0.03;
NfL and RD: rho=0.4, p=0.05; Supplemental Figure 2). Results in classic ALS are
convincing, overall supporting our main findings of a significant relationship between CSF
NfL and CST integrity.
Relationship between CSF NfL and survival across ALS phenotypes
The distribution of observed survival times over measured NfL levels is shown in
Supplemental Figure 3A for the distinct phenotypes. Classic phenotypes with survival times
greater than 8 years were excluded as they seem to exhibit a somewhat different course of
disease. Within that plot, the distribution of the values of the UMND ALS phenotype is
seemingly different from that of the scatter pattern of the classic phenotype. To elucidate this,
a principal component analysis with the variables NfL and survival time was performed
yielding the eigenvectors shown as arrows in black. The factor loads of [-0.7, 0.7] and [0.7,
0.7] lead to factor 1 describing constellations with low NfL values and comparatively longer
survival times and factor 2 pointing to individuals with longer survival times despite higher
NfL values. The scatter plot in factor coordinates in Supplemental Figure 3B reveals that
patients with the classic phenotype tend to scatter along the factor 1 axis, displaying low NfL
and relatively long survival times or for negative factor 1 values a combination of high NfL
with short survival times. The UMND group displays a negative mean for factor 1, so that
they also seem to exhibit elevated NfL levels corresponding to decreased survival times. But
this is somewhat offset by a positive mean value in their factor 2 components, allowing for
constellations with higher NfL levels than comparably long-lived classic cases or the ability to
survive longer than would be expected for a classic case with these NfL levels (or a
combination of those two). One may thus hypothesize that these results point to the

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that tau phosphorylation is altered in ALS post-mortem mCTX as well as in cerebrospinal fluid (CSF) samples, suggesting that CSF total tau and pTau-T181 ratio may serve as biomarkers of disease in ALS.
Abstract: Although the molecular mechanisms underlying amyotrophic lateral sclerosis (ALS) are not yet fully understood, several studies report alterations in tau phosphorylation in both sporadic and familial ALS. Recently, we have demonstrated that phosphorylated tau at S396 (pTau-S396) is mislocalized to synapses in ALS motor cortex (mCTX) and contributes to mitochondrial dysfunction. Here, we demonstrate that while there was no overall increase in total tau, pTau-S396, and pTau-S404 in ALS post-mortem mCTX, total tau and pTau-S396 were increased in C9ORF72-ALS. Additionally, there was a significant decrease in pTau-T181 in ALS mCTX compared controls. Furthermore, we leveraged the ALS Knowledge Portal and Project MinE data sets and identified ALS-specific genetic variants across MAPT, the gene encoding tau. Lastly, assessment of cerebrospinal fluid (CSF) samples revealed a significant increase in total tau levels in bulbar-onset ALS together with a decrease in CSF pTau-T181:tau ratio in all ALS samples, as reported previously. While increases in CSF tau levels correlated with a faster disease progression as measured by the revised ALS functional rating scale (ALSFRS-R), decreases in CSF pTau-T181:tau ratio correlated with a slower disease progression, suggesting that CSF total tau and pTau-T181 ratio may serve as biomarkers of disease in ALS. Our findings highlight the potential role of pTau-T181 in ALS, as decreases in CSF pTau-T181:tau ratio may reflect the significant decrease in pTau-T181 in post-mortem mCTX. Taken together, these results indicate that tau phosphorylation is altered in ALS post-mortem mCTX as well as in CSF and, importantly, the newly described pathogenic or likely pathogenic variants identified in MAPT in this study are adjacent to T181 and S396 phosphorylation sites further highlighting the potential role of these tau functional domains in ALS.

6 citations

Journal ArticleDOI
TL;DR: In this paper, a hybrid methodology for predicting the survivability of patients suffering from prostate cancer by applying the Factor Analysis of Mixed Data (FAMD) algorithm, along with under-sampling methods for the SEER dataset as the pre-processing step prior to the main models, namely XGBoost, random forest (RF), support vector machine (SVM), and logistic regression (LR) with a cross-validation technique for parameter tuning to predict both binary labeled and multi-class labeled (including other causes of death) cases, which has been rarely investigated in other

5 citations

Journal ArticleDOI
30 Jul 2020
TL;DR: Peripheral nerve imaging, especially HRUS, should play an important role in the diagnostic work-up for immune-mediated neuropathies and their differentiation from ALS.
Abstract: Background: Diagnosis of immune-mediated neuropathies and their differentiation from amyotrophic lateral sclerosis (ALS) can be challenging, especially at early disease stages. Accurate diagnosis is, however, important due to the different prognosis and available treatment options. We present one patient with a left-sided dorsal flexor paresis and initial suspicion of ALS and another with multifocal sensory deficits. In both, peripheral nerve imaging was the key for diagnosis. Methods: We performed high-resolution nerve ultrasound (HRUS) and 7T or 3T magnetic resonance neurography (MRN). Results: In both patients, HRUS revealed mild to severe, segmental or inhomogeneous, nerve enlargement at multiple sites, as well as an area increase of isolated fascicles. MRN depicted T2 hyperintense nerves with additional contrast-enhancement. Discussion: Peripheral nerve imaging was compatible with the respective diagnosis of an immune-mediated neuropathy, i.e., multifocal motor neuropathy (MMN) in patient 1 and multifocal acquired demyelinating sensory and motor neuropathy (MADSAM) in patient 2. Peripheral nerve imaging, especially HRUS, should play an important role in the diagnostic work-up for immune-mediated neuropathies and their differentiation from ALS.

5 citations


Cites background from "Significance of CSF NfL and tau in ..."

  • ...Cerebrospinal fluid (CSF) showed an albuminocytologic dissociation (protein concentration: 110 mg/dL (15–45 mg/dL [15]); cell count: 4 cells/μL (5)) and increased neurofilament light chain (NFL) levels (5539 pg/mL (612–2616 pg/mL [16]))....

    [...]

  • ...Further, patient 1 exhibited (slightly) increased CSF NfL levels, which can be detected in both MMN and ALS [16,37]....

    [...]

Journal ArticleDOI
TL;DR: In this article , the authors investigated the relationship between serum levels of the neuroaxonal degeneration biomarker neurofilament light chain (NFL) and phenotype in ALS and found a negative correlation between sNFL and estimated glomerular filtration rate (eGFR).
Abstract: Objective To investigate the relationship between serum levels of the neuroaxonal degeneration biomarker neurofilament light chain (NFL) and phenotype in ALS. Materials and methods Serum NFL (sNFL) concentration was quantified in 209 ALS patients and 46 neurologically healthy controls (NHCs). Results sNFL was clearly increased in ALS patients and discriminated them from NHCs with AUC = 0.9694. Among ALS patients, females had higher sNFL levels, especially in case of bulbar onset. sNFL was more increased in phenotypes with both upper (UMN) and lower motor neuron (LMN) signs, and particularly in those with UMN predominance, compared to LMN forms. At the same time, primary lateral sclerosis (PLS) had significantly lower levels compared to UMN-predominant ALS (AUC = 0.7667). sNFL correlated negatively with disease duration at sampling and ALSFRS-R score, positively with disease progression rate, differed among King’s stages, and was negatively associated with survival. It also correlated with clinical/neurophysiological indices of UMN and LMN dysfunction (Penn UMN Score, LMN score, MRC composite score, active spinal denervation score). On the contrary, sNFL was not associated with cognitive deficits nor with respiratory parameters. Notably, we found a negative correlation between sNFL and estimated glomerular filtration rate (eGFR). Interpretation We confirm that ALS is characterized by increased sNFL levels, whose main determinant is the rate of degeneration of both UMNs and LMNs. sNFL is a biomarker of only motor, not of extra-motor, disease. The negative correlation with kidney function might reflect varying renal clearance of the molecule and deserves further investigation before introducing sNFL measurement as routine test in clinical care of ALS patients.

3 citations

Book ChapterDOI
01 Jan 2020
TL;DR: The Beclin1 is an essential biomolecular species for cross-regulation between autophagy and apoptosis and is necessary for neuronal integrity in the development of neurodegenerative disorders.
Abstract: Beclin1 is the mammalian orthologue of yeast Atg6/vacuolar protein sorting-30 (VPS30). Beclin1 interacts with various biological macromolecules like ATG14, BIF-1, NRBF2, RUBICON, UVRAG, AMBRA1, HMGB1, PINK1, and PARKIN. Such interactions promote Beclin1-PI3KC3 complex formation. Autophagy is blocked in apoptosis owing to the breakdown of Beclin1 by caspase whereas autophagy induction inhibits effector caspase degradation, therefore, blocks apoptosis. Thus, the Beclin1 is an essential biomolecular species for cross-regulation between autophagy and apoptosis. Various studies carried out in neurodegenerative animal models associated with aggregated proteins have confirmed that multifunctional Beclin1 protein is necessary for neuronal integrity. The role of Beclin1 protein has been investigated and was reported in various human neurodegeneration disorders. This chapter aims to provide an insight into the role of Beclin1 in the development of neurodegenerative disorders.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: TBSS aims to improve the sensitivity, objectivity and interpretability of analysis of multi-subject diffusion imaging studies by solving the question of how to align FA images from multiple subjects in a way that allows for valid conclusions to be drawn from the subsequent voxelwise analysis.

5,959 citations

Journal ArticleDOI
TL;DR: The criteria described below represent the result of a three-day workshop, convened at Airlie Conference Center, Warrenton, Virginia on 2–4 April, 1998 by the World Federation of Neurology Research Committee on Motor Neuron Diseases, and are placed on the WFN ALS website.
Abstract: (2000). El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Vol. 1, No. 5, pp. 293-299.

4,522 citations


"Significance of CSF NfL and tau in ..." refers methods in this paper

  • ...) according to 149 the revised El Escorial criteria comprising the assessment of the number of regions (bulbar, 150 thoracic, upper limb, lower limb) with UMN (clinically) or lower motor neuron (LMN) 151 involvement (clinically or via electromyography) [27]....

    [...]

Journal ArticleDOI
TL;DR: The frequently observed "halo" of periventricular hyperintensity in Alzheimer's disease may be of diagnostic importance and high-signal abnormalities in specific cortical regions are likely to reflect disease processes localized to those structures.
Abstract: The type, frequency, and extent of MR signal abnormalities in Alzheimer's disease and normal aging are a subject of controversy. With a 1.5-MR unit we studied 12 Alzheimer patients, four subjects suffering from multiinfarct dementia and nine age-matched controls. Punctate or early confluent high-signal abnormalities in the deep white matter, noted in 60% of both Alzheimer patients and controls, were unrelated to the presence of hypertension or other vascular risk factors. A significant number of Alzheimer patients exhibited a more extensive smooth "halo" of periventricular hyperintensity when compared with controls (p = .024). Widespread deep white-matter hyperintensity (two patients) and extensive, irregular periventricular hyperintensity (three patients) were seen in multiinfarct dementia. Areas of high signal intensity affecting hippocampal and sylvian cortex were also present in five Alzheimer and two multiinfarct dementia patients, but absent in controls. Discrete, small foci of deep white-matter hyperintensity are not characteristic of Alzheimer's disease nor do they appear to imply a vascular cause for the dementing illness. The frequently observed "halo" of periventricular hyperintensity in Alzheimer's disease may be of diagnostic importance. High-signal abnormalities in specific cortical regions are likely to reflect disease processes localized to those structures.

3,573 citations

Journal Article
TL;DR: The type, frequency, and extent of MR signal abnormalities in Alzheimer9s disease and normal aging are a subject of controversy as mentioned in this paper, and the most commonly observed "halo" of periventricular hyperintensity in Alzheimer 9s disease may be of diagnostic importance.
Abstract: The type, frequency, and extent of MR signal abnormalities in Alzheimer9s disease and normal aging are a subject of controversy. With a 1.5-MR unit we studied 12 Alzheimer patients, four subjects suffering from multiinfarct dementia and nine age-matched controls. Punctate or early confluent high-signal abnormalities in the deep white matter, noted in 60% of both Alzheimer patients and controls, were unrelated to the presence of hypertension or other vascular risk factors. A significant number of Alzheimer patients exhibited a more extensive smooth “halo” of periventricular hyperintensity when compared with controls (p = .024). Widespread deep white-matter hyperintensity (two patients) and extensive, irregular periventricular hyperintensity (three patients) were seen in multiinfarct dementia. Areas of high signal intensity affecting hippocampal and sylvian cortex were also present in five Alzheimer and two multiinfarct dementia patients, but absent in controls. Discrete, small foci of deep white-matter hyperintensity are not characteristic of Alzheimer9s disease nor do they appear to imply a vascular cause for the dementing illness. The frequently observed “halo” of periventricular hyperintensity in Alzheimer9s disease may be of diagnostic importance. High-signal abnormalities in specific cortjcal regions are likely to reflect disease processes localized to those structures.

3,053 citations

Journal ArticleDOI
TL;DR: This Review summarizes the most recent advances in knowledge of the mechanisms of tau-mediated neurodegeneration to forge an integrated concept of those t Tau-linked disease processes that drive the onset and progression of AD and related tauopathies.
Abstract: Advances in our understanding of the mechanisms of tau-mediated neurodegeneration in Alzheimer's disease (AD) and related tauopathies, which are characterized by prominent CNS accumulations of fibrillar tau inclusions, are rapidly moving this previously underexplored disease pathway to centre stage for disease-modifying drug discovery efforts. However, controversies abound concerning whether or not the deleterious effects of tau pathologies result from toxic gains-of-function by pathological tau or from critical losses of normal tau function in the disease state. This Review summarizes the most recent advances in our knowledge of the mechanisms of tau-mediated neurodegeneration to forge an integrated concept of those tau-linked disease processes that drive the onset and progression of AD and related tauopathies.

1,955 citations


"Significance of CSF NfL and tau in ..." refers background in this paper

  • ...in thin unmyelinated axons of the neocortical gray 345 matter, providing axonal transport and maintenance of the neurons’ structure/morphology 346 [52, 53]....

    [...]

Related Papers (5)
Frequently Asked Questions (1)
Q1. What are the contributions in this paper?

The Penn UMN score ranged from 0 to 32 points and comprised items from the bulbar segment ( 0-4 points ) and from each of the four limbs ( 0 -7 points per limb ) this paper.