scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Silane coupling agents used for natural fiber/polymer composites: A review

TL;DR: In this paper, the authors review the recent progress in using silane coupling agents for NFPCs, summarizes the effective silane structures from the silane family, clarifies the interaction mechanisms between natural fibers and polymer matrices, and presents the effects of silane treatments on the mechanical and outdoor performance of the resulting composites.
Abstract: Natural fiber reinforced polymer composites (NFPCs) provide the customers with more alternatives in the material market due to their unique advantages. Poor fiber–matrix interfacial adhesion may, however, negatively affect the physical and mechanical properties of the resulting composites due to the surface incompatibility between hydrophilic natural fibers and non-polar polymers (thermoplastics and thermosets). A variety of silanes (mostly trialkoxysilanes) have been applied as coupling agents in the NFPCs to promote interfacial adhesion and improve the properties of composites. This paper reviews the recent progress in using silane coupling agents for NFPCs, summarizes the effective silane structures from the silane family, clarifies the interaction mechanisms between natural fibers and polymer matrices, and presents the effects of silane treatments on the mechanical and outdoor performance of the resulting composites.
Citations
More filters
Journal ArticleDOI
Abstract: Recently, there has been a rapid growth in research and innovation in the natural fibre composite (NFC) area. Interest is warranted due to the advantages of these materials compared to others, such as synthetic fibre composites, including low environmental impact and low cost and support their potential across a wide range of applications. Much effort has gone into increasing their mechanical performance to extend the capabilities and applications of this group of materials. This review aims to provide an overview of the factors that affect the mechanical performance of NFCs and details achievements made with them.

2,182 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the recent development of cellulosic and synthetic fibres based reinforced hybrid composites is presented, focusing the attention in terms of processing, mechanical, physical, electrical, thermal and dynamic mechanical properties.

1,069 citations

Journal ArticleDOI
TL;DR: In this article, the effects of chemical additives such as fibre treatments, fire retardants and Ultraviolet (UV) stabilizers are also addressed, and it was concluded that an optimum blend ratio of chemical additive must be employed to achieve a balance between strength and durability requirements for natural fibre composites.

1,042 citations


Cites background from "Silane coupling agents used for nat..."

  • ...The tensile and flexural strength of the modified composites were slightly reduced (up to 8%), which is distinctly less than over 30% for the untreated composites [14]....

    [...]

  • ...With this, the resulting polymer composites are drier under a moist environment thereby reducing the risk of environmental damage such as deformation and fungal decay [14]....

    [...]

  • ...saturated with water while the core layers may have significantly less moisture [14]....

    [...]

  • ...Bulking treatment, on the other hand, may reduce the cell wall nano-pore size and deactivate or mask the hydroxyl functionalities thereby decreasing water sorption [14]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive review of the most appropriate and widely used natural fiber reinforced polymer composites (NFPCs) and their applications is presented in this paper. But, the results of the review are limited due to the high water absorption, inferior fire resistance, and lower mechanical properties of NFPCs.
Abstract: Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs) and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

1,022 citations


Cites background from "Silane coupling agents used for nat..."

  • ...NFPCs with a high specific stiffness and strength can be produced by adding the tough and light-weight natural fiber into polymer (thermoplastic and thermoset) [6]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the surface treatment of natural fibers and improving the fiber/matrix interface is discussed, with particular attention paid to the surface treatments of fibers and improvements of the fiber interface.
Abstract: Compared to most synthetic fibers, natural fibers are low-cost, are easier to handle, have good specific mechanical properties, and require only around 20–40% of the production energy. Using natural materials and modern construction techniques reduces construction waste and increases energy efficiency while promoting the concept of sustainability. Several drawbacks of natural composites which would be even more pronounced in their use in infrastructure include their higher moisture absorption, inferior fire resistance, lower mechanical properties and durability, variation in quality and price, and difficulty using established manufacturing practices when compared to synthetic composites. Many researchers have been working to address these issues, with particular attention paid to the surface treatment of fibers and improving the fiber/matrix interface. Because of their positive economic and environmental outlook, as well as their ability to uniquely meet human needs worldwide, natural composites are showing a good potential for use in infrastructure applications.

972 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites is presented, and the influence of such treatments by taking into account fibre content on the creep, quasi-static, cyclic dynamic and impact behaviour of natural fibre reinforced plastics are discussed in detail.

4,160 citations

Journal ArticleDOI
TL;DR: In this paper, natural fibres (sisal, kenaf, hemp, jute and coir) reinforced polypropylene composites were processed by compression molding using a film stacking method.

2,161 citations

01 Sep 2001
TL;DR: In this article, natural fibres (sisal, kenaf, hemp, jute and coir) reinforced polypropylene composites were processed by compression molding using a film stacking method.
Abstract: In this work, natural fibres (sisal, kenaf, hemp, jute and coir) reinforced polypropylene composites were processed by compression moulding using a film stacking method. The mechanical properties of the different natural fibre composites were tested and compared. A further comparison was made with the corresponding properties of glass mat reinforced polypropylene composites from the open literature. Kenaf, hemp and sisal composites showed comparable tensile strength and modulus results but in impact properties hemp appears to out-perform kenaf. The tensile modulus, impact strength and the ultimate tensile stress of kenaf reinforced polypropylene composites were found to increase with increasing fibre weight fraction. Coir fibre composites displayed the lowest mechanical properties, but their impact strength was higher than that of jute and kenaf composites. In most cases the specific properties of the natural fibre composites were found to compare favourably with those of glass.

1,963 citations

Book
Edwin P. Plueddemann1
01 Aug 1982
TL;DR: In this article, a novel organosilane coupling agent is described and its use as an adhesion promoter in mineral-filled unsaturated polymer systems is described, where the coupling agent comprises the reaction product of an isocyanatoalkyl ester of acrylic or methacrylic acid with an aminoorganosilanes.
Abstract: A novel organosilane coupling agent is disclosed and its use as an adhesion promoter in mineral-filled unsaturated polymer systems is described. Additionally, use of the organosilane as a primer for various substrates is presented. The coupling agent comprises the reaction product of an isocyanatoalkyl ester of acrylic or methacrylic acid with an aminoorganosilane. The organosilane so formed links the acryloxyalkyl or methacryloxyalkyl functionality to an alkylene, or aminoalkylene, group on the silicon atom through a urea group. Use of the organosilane as a coupling agent in a mineral-filled unsaturated polymer results in superior resistance to moisture, particularly when the polymer is selected from the group of corrosion resistant unsaturated polyesters.

1,522 citations

Patent
16 Sep 1974
TL;DR: In this article, a carboxylic acid anhydride was used as a coupling agent for glass fibers to resinous plastics, including thermoplastics and thermosetting resins and the elastomeric materials.
Abstract: The silane coupling agents are prepared by reaction of the mercapto silane with a carboxylic acid anhydride whereby the mercapto group adds across the double bond of the anhydride. The compounds can be converted to the corresponding diacid by reaction with water, and are useful as coupling agents for bonding glass fibers to resinous plastics, including thermoplastics and thermosetting resins and the elastomeric materials.

1,331 citations