scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Silicon nanowire transistor with a channel width of 4 nm fabricated by atomic force microscope nanolithography

26 Jul 2009-Vol. 8, Iss: 11, pp 3636-3639
TL;DR: An atomic force microscopy lithography that enables the reproducible fabrication of complex single-crystalline silicon nanowire field-effect transistors with a high electrical performance is demonstrated.
Abstract: The emergence of an ultrasensitive sensor technology based on silicon nanowires requires both the fabrication of nanoscale diameter wires and the integration with microelectronic processes. Here we demonstrate an atomic force microscopy lithography that enables the reproducible fabrication of complex single-crystalline silicon nanowire field-effect transistors with a high electrical performance. The nanowires have been carved from a silicon-on-insulator wafer by a combination of local oxidation processes with a force microscope and etching steps. We have fabricated and measured the electrical properties of a silicon nanowire transistor with a channel width of 4 nm. The flexibility of the nanofabrication process is illustrated by showing the electrical performance of two nanowire circuits with different geometries. The fabrication method is compatible with standard Si CMOS processing technologies and, therefore, can be used to develop a wide range of architectures and new microelectronic devices.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art within additive nanomanufacturing (ANM) technologies such as electrohydrodynamic jet printing, dip-pen lithography, direct laser writing, and several single particle placement methods such as optical tweezers and electrokinetic nanomanipulation are discussed.
Abstract: Additive manufacturing has provided a pathway for inexpensive and flexible manufacturing of specialized components and one-off parts. At the nanoscale, such techniques are less ubiquitous. Manufacturing at the nanoscale is dominated by lithography tools that are too expensive for small- and medium-sized enterprises (SMEs) to invest in. Additive nanomanufacturing (ANM) empowers smaller facilities to design, create, and manufacture on their own while providing a wider material selection and flexible design. This is especially important as nanomanufacturing thus far is largely constrained to 2-dimensional patterning techniques and being able to manufacture in 3-dimensions could open up new concepts. In this review, we outline the state-of-the-art within ANM technologies such as electrohydrodynamic jet printing, dip-pen lithography, direct laser writing, and several single particle placement methods such as optical tweezers and electrokinetic nanomanipulation. The ANM technologies are compared in terms of deposition speed, resolution, and material selection and finally the future prospects of ANM are discussed. This review is up-to-date until April 2014.

111 citations

Journal ArticleDOI
TL;DR: A comprehensive look at various aspects of thermoelectrics of NWs, including earlier theoretical and experimental work on quantum confinement effects and semimetal-to-semiconductor transition, surface engineering and complex heterostructures to enhance the carrier mobility and power factor, and the recent emergence of topological insulator NWs are provided.
Abstract: The field of thermoelectric research has undergone a renaissance and boom in the past two and a half decades, largely fueled by the prospect of engineering electronic and phononic properties in nanostructures, among which semiconductor nanowires (NWs) have served both as an important platform to investigate fundamental thermoelectric transport phenomena and as a promising route for high thermoelectric performance for diverse applications. In this Review, we provide a comprehensive look at various aspects of thermoelectrics of NWs. We start with a brief introduction of basic thermoelectric phenomena, followed by synthetic methods for thermoelectric NWs and a summary of their thermoelectric figures of merit (ZT). We then focus our discussion on charge and heat transport, which dictate thermoelectric power factor and thermal conductivity, respectively. For charge transport, we cover the basic principles governing the power factor and then review several strategies using NWs to enhance it, including earlier t...

102 citations

Journal ArticleDOI
TL;DR: Here, several recent applications of the big and deep data analysis methods are reviewed to visualize, compress, and translate this multidimensional structural and functional data into physically and chemically relevant information.
Abstract: The development of electron and scanning probe microscopies in the second half of the twentieth century has produced spectacular images of the internal structure and composition of matter with nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition, and analysis. Advances in imaging technology in the beginning of the twenty-first century have opened the proverbial floodgates on the availability of high-veracity information on structure and functionality. From the hardware perspective, high-resolution imaging methods now routinely resolve atomic positions with approximately picometer precision, allowing for quantitative measurements of individual bond lengths and angles. Similarly, functional imaging often leads to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this multidimensional structural and functional data into physically and chemically relevant information.

101 citations

Journal ArticleDOI
TL;DR: This study suggests simple (no additional doping) FETs using tiny top-down nanowires can deliver high performance for potential impact on both CMOS scaling and emerging applications such as biosensing.
Abstract: We demonstrate lithographically fabricated Si nanowire field effect transistors (FETs) with long Si nanowires of tiny cross sectional size (∼3-5 nm) exhibiting high performance without employing complementarily doped junctions or high channel doping. These nanowire FETs show high peak hole mobility (as high as over 1200 cm(2)/(V s)), current density, and drive current as well as low drain leakage current and high on/off ratio. Comparison of nanowire FETs with nanobelt FETs shows enhanced performance is a result of significant quantum confinement in these 3-5 nm wires. This study suggests simple (no additional doping) FETs using tiny top-down nanowires can deliver high performance for potential impact on both CMOS scaling and emerging applications such as biosensing.

100 citations

Journal ArticleDOI
TL;DR: This review paper will put a particular emphasis on nanostructured silicon, which represents a valid compromise between good thermoelectric properties on one side and material availability, sustainability, technological feasibility on the other side.
Abstract: A big research effort is currently dedicated to the development of thermoelectric devices capable of a direct thermal-to-electrical energy conversion, aiming at efficiencies as high as possible. These devices are very attractive for many applications in the fields of energy recovery and green energy harvesting. In this paper, after a quick summary of the fundamental principles of thermoelectricity, the main characteristics of materials needed for high efficiency thermoelectric conversion will be discussed, and a quick review of the most promising materials currently under development will be given. This review paper will put a particular emphasis on nanostructured silicon, which represents a valid compromise between good thermoelectric properties on one side and material availability, sustainability, technological feasibility on the other side. The most important bottom-up and top-down nanofabrication techniques for large area silicon nanowire arrays, to be used for high efficiency thermoelectric devices, will be presented and discussed.

86 citations

References
More filters
Journal ArticleDOI
02 Feb 2001-Science
TL;DR: The facile assembly of key electronic device elements from well-defined nanoscale building blocks may represent a step toward a "bottom-up" paradigm for electronics manufacturing.
Abstract: Because semiconductor nanowires can transport electrons and holes, they could function as building blocks for nanoscale electronics assembled without the need for complex and costly fabrication facilities. Boron- and phosphorous-doped silicon nanowires were used as building blocks to assemble three types of semiconductor nanodevices. Passive diode structures consisting of crossed p- and n-type nanowires exhibit rectifying transport similar to planar p-n junctions. Active bipolar transistors, consisting of heavily and lightly n-doped nanowires crossing a common p-type wire base, exhibit common base and emitter current gains as large as 0.94 and 16, respectively. In addition, p- and n-type nanowires have been used to assemble complementary inverter-like structures. The facile assembly of key electronic device elements from well-defined nanoscale building blocks may represent a step toward a "bottom-up" paradigm for electronics manufacturing.

3,143 citations

Journal ArticleDOI
18 Oct 2007-Nature
TL;DR: These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.
Abstract: Solar cells are attractive candidates for clean and renewable power; with miniaturization, they might also serve as integrated power sources for nanoelectronic systems. The use of nanostructures or nanostructured materials represents a general approach to reduce both cost and size and to improve efficiency in photovoltaics. Nanoparticles, nanorods and nanowires have been used to improve charge collection efficiency in polymer-blend and dye-sensitized solar cells, to demonstrate carrier multiplication, and to enable low-temperature processing of photovoltaic devices. Moreover, recent theoretical studies have indicated that coaxial nanowire structures could improve carrier collection and overall efficiency with respect to single-crystal bulk semiconductors of the same materials. However, solar cells based on hybrid nanoarchitectures suffer from relatively low efficiencies and poor stabilities. In addition, previous studies have not yet addressed their use as photovoltaic power elements in nanoelectronics. Here we report the realization of p-type/intrinsic/n-type (p-i-n) coaxial silicon nanowire solar cells. Under one solar equivalent (1-sun) illumination, the p-i-n silicon nanowire elements yield a maximum power output of up to 200 pW per nanowire device and an apparent energy conversion efficiency of up to 3.4 per cent, with stable and improved efficiencies achievable at high-flux illuminations. Furthermore, we show that individual and interconnected silicon nanowire photovoltaic elements can serve as robust power sources to drive functional nanoelectronic sensors and logic gates. These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.

2,879 citations

Journal ArticleDOI
01 Feb 2007-Nature
TL;DR: This work reports an approach that uses complementary metal oxide semiconductor (CMOS) field effect transistor compatible technology and hence demonstrates the specific label-free detection of below 100 femtomolar concentrations of antibodies as well as real-time monitoring of the cellular immune response.
Abstract: Semiconducting nanowires have the potential to act as highly sensitive sensors for the detection of pathogenic microorganisms, without the need for a label on the pathogen. Practical miniature sensors would have applications in diagnostics, homeland security and basic research. Current technologies have not been widely adopted for various reasons, including the difficulty of integrating nanoscale devices into practical sensors. Now a team spanning five departments at Yale has developed a new approach to the problem. In a state-of-the-art (CMOS-compatible) system they create miniature, ultra-sensitive sensors that can detect specific unlabelled antibodies at concentrations below 100 femtomolar and are able to monitor the cellular immune response in 'real-time'. A new approach that uses complementary metal oxide semiconductor field effect transistor compatible technology is reported, and demonstrates the specific label-free detection of below 100 femtomolar concentrations of antibodies as well as real-time monitoring of the cellular immune response. Semiconducting nanowires have the potential to function as highly sensitive and selective sensors for the label-free detection of low concentrations of pathogenic microorganisms1,2,3,4,5,6,7,8,9,10. Successful solution-phase nanowire sensing has been demonstrated for ions3, small molecules4, proteins5,6, DNA7 and viruses8; however, ‘bottom-up’ nanowires (or similarly configured carbon nanotubes11) used for these demonstrations require hybrid fabrication schemes12,13, which result in severe integration issues that have hindered widespread application. Alternative ‘top-down’ fabrication methods of nanowire-like devices9,10,14,15,16,17 produce disappointing performance because of process-induced material and device degradation. Here we report an approach that uses complementary metal oxide semiconductor (CMOS) field effect transistor compatible technology and hence demonstrate the specific label-free detection of below 100 femtomolar concentrations of antibodies as well as real-time monitoring of the cellular immune response. This approach eliminates the need for hybrid methods and enables system-scale integration of these sensors with signal processing and information systems. Additionally, the ability to monitor antibody binding and sense the cellular immune response in real time with readily available technology should facilitate widespread diagnostic applications.

1,364 citations

Journal ArticleDOI
TL;DR: Direct, real-time electrical detection of single virus particles with high selectivity by using nanowire field effect transistors is reported, suggesting potential for simultaneous detection of a large number of distinct viral threats at the single virus level.
Abstract: We report direct, real-time electrical detection of single virus particles with high selectivity by using nanowire field effect transistors. Measurements made with nanowire arrays modified with antibodies for influenza A showed discrete conductance changes characteristic of binding and unbinding in the presence of influenza A but not paramyxovirus or adenovirus. Simultaneous electrical and optical measurements using fluorescently labeled influenza A were used to demonstrate conclusively that the conductance changes correspond to binding/unbinding of single viruses at the surface of nanowire devices. pH-dependent studies further show that the detection mechanism is caused by a field effect, and that the nanowire devices can be used to determine rapidly isoelectric points and variations in receptor-virus binding kinetics for different conditions. Lastly, studies of nanowire devices modified with antibodies specific for either influenza or adenovirus show that multiple viruses can be selectively detected in parallel. The possibility of large-scale integration of these nanowire devices suggests potential for simultaneous detection of a large number of distinct viral threats at the single virus level.

1,257 citations

Journal ArticleDOI
Zhiyong Li1, Yong Chen1, Xuema Li1, Theodore I. Kamins1, K. Nauka1, R.S. Williams1 
TL;DR: Highly sensitive and sequence-specific DNA sensors were fabricated based on silicon nanowires with single stranded probe DNA molecules covalently immobilized on the nanowire surfaces, recognizing label-free complementary ss-DNA in sample solutions when the target DNA was hybridized with the probe DNA attached on the SiNW surfaces.
Abstract: Highly sensitive and sequence-specific DNA sensors were fabricated based on silicon nanowires (SiNWs) with single stranded (ss) probe DNA molecules covalently immobilized on the nanowire surfaces. Label-free complementary (target) ss-DNA in sample solutions were recognized when the target DNA was hybridized with the probe DNA attached on the SiNW surfaces, producing a change of the conductance of the SiNWs. For a 12-mer oligonucletide probe, 25 pM of target DNA in solution was detected easily (signal/noise ratio > 6), whereas 12-mers with one base mismatch did not produce a signal above the background noise.

805 citations