scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Silicon-on-insulator 'gate-all-around device'

09 Dec 1990-pp 595-598
TL;DR: In this paper, the authors describe the process fabrication and the electrical characteristics of an SOI MOSFET with gate oxide and a gate electrode not only on top of the active silicon film but also underneath it.
Abstract: Describes the process fabrication and the electrical characteristics of an SOI (silicon-on-insulator) MOSFET with gate oxide and a gate electrode not only on top of the active silicon film but also underneath it. Device fabrication is simple and necessitates only a single additional mask and etch step, compared to standard SOI processing. The device shows evidence of volume inversion (inversion is observed not only in surface channels, but through the entire thickness of the silicon film). Because of the presence of two channels and because of reduced carrier scattering within the bulk of the silicon film, the transconductance of the 'gate-all-around' device is more than twice that of a conventional SOI device, and its subthreshold slope is nearly 60 mV/decade at room temperature. >
Citations
More filters
Journal ArticleDOI
R.-H. Yan1, Abbas Ourmazd1, K.F. Lee1
TL;DR: In this article, the scaling of fully depleted SOI devices is considered and the concept of controlling horizontal leakage through vertical structures is highlighted, and several structural variations of conventional SOI structures are discussed in terms of a natural length scale to guide the design.
Abstract: Scaling the Si MOSFET is reconsidered. Requirements on subthreshold leakage control force conventional scaling to use high doping as the device dimension penetrates into the deep-submicrometer regime, leading to an undesirably large junction capacitance and degraded mobility. By studying the scaling of fully depleted SOI devices, the important concept of controlling horizontal leakage through vertical structures is highlighted. Several structural variations of conventional SOI structures are discussed in terms of a natural length scale to guide the design. The concept of vertical doping engineering can also be realized in bulk Si to obtain good subthreshold characteristics without large junction capacitance or heavy channel doping. >

921 citations

Journal ArticleDOI
01 Apr 1997
TL;DR: In this article, the key challenges in further scaling of CMOS technology into the nanometer (sub-100 nm) regime in light of fundamental physical effects and practical considerations are discussed, including power supply and threshold voltage, short-channel effect, gate oxide, high-field effects, dopant number fluctuations and interconnect delays.
Abstract: Starting with a brief review on 0.1-/spl mu/m (100 nm) CMOS status, this paper addresses the key challenges in further scaling of CMOS technology into the nanometer (sub-100 nm) regime in light of fundamental physical effects and practical considerations. Among the issues discussed are: lithography, power supply and threshold voltage, short-channel effect, gate oxide, high-field effects, dopant number fluctuations and interconnect delays. The last part of the paper discusses several alternative or unconventional device structures, including silicon-on-insulator (SOI), SiGe MOSFET's, low-temperature CMOS, and double-gate MOSFET's, which may lead to the outermost limits of silicon scaling.

861 citations


Cites background from "Silicon-on-insulator 'gate-all-arou..."

  • ...29(a)] reported in the literature so far [54], [55] has a self-aligned bottom gate....

    [...]

Journal ArticleDOI
17 Nov 2011-Nature
TL;DR: In the current generation of transistors, the transistor dimensions have shrunk to such an extent that the electrical characteristics of the device can be markedly degraded, making it unlikely that the exponential decrease in transistor size can continue.
Abstract: For more than four decades, transistors have been shrinking exponentially in size, and therefore the number of transistors in a single microelectronic chip has been increasing exponentially. Such an increase in packing density was made possible by continually shrinking the metal–oxide–semiconductor field-effect transistor (MOSFET). In the current generation of transistors, the transistor dimensions have shrunk to such an extent that the electrical characteristics of the device can be markedly degraded, making it unlikely that the exponential decrease in transistor size can continue. Recently, however, a new generation of MOSFETs, called multigate transistors, has emerged, and this multigate geometry will allow the continuing enhancement of computer performance into the next decade.

842 citations

Journal ArticleDOI
Hon-Sum Philip Wong1
TL;DR: In this paper, the authors focus on approaches to continue CMOS scaling by introducing new device structures and new materials, including high-dielectric-constant (high-k) gate dielectric, metal gate electrode, double-gate FET and strained-silicon FET.
Abstract: This paper focuses on approaches to continuing CMOS scaling by introducing new device structures and new materials. Starting from an analysis of the sources of improvements in device performance, we present technology options for achieving these performance enhancements. These options include high-dielectric-constant (high-k) gate dielectric, metal gate electrode, double-gate FET, and strained-silicon FET. Nanotechnology is examined in the context of continuing the progress in electronic systems enabled by silicon microelectronics technology. The carbon nanotube field-effect transistor is examined as an example of the evaluation process required to identify suitable nanotechnologies for such purposes.

644 citations

Journal ArticleDOI
TL;DR: In this article, gate-all-around (GAA) n-and p-FETs on a silicon-on-insulator with 5-nm-diameter laterally formed Si nanowire channel were demonstrated.
Abstract: This paper demonstrates gate-all-around (GAA) n- and p-FETs on a silicon-on-insulator with /spl les/ 5-nm-diameter laterally formed Si nanowire channel. Alternating phase shift mask lithography and self-limiting oxidation techniques were utilized to form 140- to 1000-nm-long nanowires, followed by FET fabrication. The devices exhibit excellent electrostatic control, e.g., near ideal subthreshold slope (/spl sim/ 63 mV/dec), low drain-induced barrier lowering (/spl sim/ 10 mV/V), and with I/sub ON//I/sub OFF/ ratio of /spl sim/10/sup 6/. High drive currents of /spl sim/ 1.5 and /spl sim/1.0 mA//spl mu/m were achieved for 180-nm-long nand p-FETs, respectively. It is verified that the threshold voltage of GAA FETs is independent of substrate bias due to the complete electrostatic shielding of the channel body.

605 citations


Cites background from "Silicon-on-insulator 'gate-all-arou..."

  • ..., relaxed body thickness yet gaining similar short-channel control as thin-body double-sided FinFET [7], [8], excellent transconductance [12], and drain-induced bar-...

    [...]

  • ...As the name suggests, the GAA FET features the gate fully surrounding the channel body and thus providing the best possible electrostatic control [12]–[16]....

    [...]

  • ...Among the many innovative approaches, double-gated FinFET [3], [4], tri-gated [5], Π-gated [6], Ω-gated [7], nanowire body [8]–[11], and gateall-around (GAA) [12]–[14] MOSFETs have attracted much...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The double-gate control of silicon-on-insulator (SOI) transistors is used to force the whole silicon film (interface layers and volume) in strong inversion as discussed by the authors.
Abstract: The double-gate control of silicon-on-insulator (SOI) transistors is used to force the whole silicon film (interface layers and volume) in strong inversion. This original method of transistor operation offers excellent device performance, in particular great increases in subthreshold slope, transconductance, and drain current. A simulation program and experiments on SIMOX structures are used to study the new device.

729 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of radiation on threshold voltage, sub-threshold slope, and mobility in ultrathin, fully depleted silicon-on-insulator (SOI) transistors are discussed.
Abstract: Improved short-channel behavior, reduced subthreshold slopes, and mobility enhancements previously observed in NMOS transistors made in thin, fully depleted silicon-on-insulator (SOI) films are discussed. These results were obtained with the back interface held in depletion during operation. It is shown from basic principles of device operation that the observed performance improvements are sensitive to the applied substrate voltage. In addition, the exposure of the back interface to the surface depletion region in these devices makes the transistor performance sensitive to radiation-induced charging effects at the back interface. The anticipated effects of radiation on threshold voltage, subthreshold slope, and mobility in ultrathin, fully depleted SOI transistors are discussed, and an estimate is made of the expected radiation sensitivity of these parameters for a typical ultrathin SOI technology. >

70 citations

Journal ArticleDOI
TL;DR: In this paper, prospective results of a SIMOX technology prototype are presented, compared with those from the literature, based on SIMOX or other structures, and the advantages and weaknesses of these structures are discussed.

18 citations

Journal ArticleDOI
TL;DR: In this paper, a plan view and cross-section specimen preparation technique for the localized thinning of semiconductor devices for TEM investigation is presented, using an iterative ion milling procedure.
Abstract: In this paper we present a rapid and highly precise plan view and cross-section specimen preparation technique for the localized thinning of semiconductor devices for TEM investigation. No special equipment except the commercially available one is required. Crosssection preparation takes about 6 hours, while plan view takes about 4 hours. Prespecified areas of 0.6 Λm wide and 10 Λm long can easily be thinned with transparency for CTEM and HREM. Using an iterative ion milling procedure allows to scan a complete device in HREM.

7 citations