scispace - formally typeset
Journal ArticleDOI

Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers

03 Sep 1990-Applied Physics Letters (American Institute of Physics)-Vol. 57, Iss: 10, pp 1046-1048

TL;DR: In this paper, free standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography using electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers.

AbstractIndirect evidence is presented that free‐standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography. The novel approach uses electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers. Mesoporous Si layers of high porosity exhibit visible (red) photoluminescence at room temperature, observable with the naked eye under <1 mW unfocused (<0.1 W cm−2) green or blue laser line excitation. This is attributed to dramatic two‐dimensional quantum size effects which can produce emission far above the band gap of bulk crystalline Si.

...read more


Citations
More filters
Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,373 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,076 citations


Cites background from "Silicon quantum wire array fabricat..."

  • ...The striking optical properties of nanoporous silicon obtained by photoanodic etching [54] extended the materials research scope of photoelectrochemistry to other porous crystalline semiconductors [55]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present methods of severe plastic deformation and formation of nanostructures, including Torsion straining under high pressure, ECA pressing, and multiple forging.
Abstract: 2. Methods of severe plastic deformation and formation of nanostructures . . . . . . . 105 2.1. SPD techniques and regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2.1.1. Torsion straining under high pressure . . . . . . . . . . . . . . . . . . . . . 106 2.1.2. ECA pressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 2.1.3. Multiple forging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 2.2. Typical nanostructures and their formation . . . . . . . . . . . . . . . . . . . . . . . 115

5,383 citations

Journal ArticleDOI
22 Jan 1999-Science
TL;DR: The synthesis of massive arrays of monodispersed carbon nanotubes that are self-oriented on patterned porous silicon and plain silicon substrates is reported and the mechanisms of nanotube growth and self-orientation are elucidated.
Abstract: The synthesis of massive arrays of monodispersed carbon nanotubes that are self-oriented on patterned porous silicon and plain silicon substrates is reported. The approach involves chemical vapor deposition, catalytic particle size control by substrate design, nanotube positioning by patterning, and nanotube self-assembly for orientation. The mechanisms of nanotube growth and self-orientation are elucidated. The well-ordered nanotubes can be used as electron field emission arrays. Scaling up of the synthesis process should be entirely compatible with the existing semiconductor processes, and should allow the development of nanotube devices integrated into silicon technology.

3,051 citations

Journal ArticleDOI
TL;DR: A large amount of work world wide has been directed towards obtaining an understanding of the fundamental characteristics of porous Si as mentioned in this paper, and the key importance of crystalline Si nanostructures in determining the behaviour of porous si is highlighted.
Abstract: A large amount of work world-wide has been directed towards obtaining an understanding of the fundamental characteristics of porous Si. Much progress has been made following the demonstration in 1990 that highly porous material could emit very efficient visible photoluminescence at room temperature. Since that time, all features of the structural, optical and electronic properties of the material have been subjected to in-depth scrutiny. It is the purpose of the present review to survey the work which has been carried out and to detail the level of understanding which has been attained. The key importance of crystalline Si nanostructures in determining the behaviour of porous Si is highlighted. The fabrication of solid-state electroluminescent devices is a prominent goal of many studies and the impressive progress in this area is described.

2,322 citations


References
More filters
Book
01 Jan 1967

10,139 citations

Journal ArticleDOI
TL;DR: In this article, the properties of electrolyte-semiconductor barriers are described, with emphasis on germanium, and the use of these barriers in localizing electrolytic etching is discussed.
Abstract: Properties of electrolyte-semiconductor barriers are described, with emphasis on germanium. The use of these barriers in localizing electrolytic etching is discussed. Other localization techniques are mentioned. Electrolytes for etching germanium and silicon are given.

1,011 citations

Journal ArticleDOI
TL;DR: It is found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive, which has implications for the ultimate efficiency of silicon solar cells.
Abstract: We have found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive. With preparation in this manner, the surface-recombination velocity on Si111g is only 0.25 cm/sec, which is the lowest value ever reported for any semiconductor. Multiple-internal-reflection infrared spectroscopy shows that the surface appears to be covered by covalent Si-H bonds, leaving virtually no surface dangling bonds to act as recombinatiuon centers. These results have implications for the ultimate efficiency of silicon solar cells.

886 citations

Journal ArticleDOI
TL;DR: In this paper, multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces, and these very inert surfaces are found to be almost completely covered by atomic hydrogen.
Abstract: Multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces. These very inert surfaces are found to be almost completely covered by atomic hydrogen. Results using polarized radiation on both flat and stepped Si(111) and Si(100) surfaces reveal the presence of many chemisorption sites (hydrides) that indicate that the surfaces are microscopically rough, although locally ordered. In particular, the HF‐prepared Si(100) surface appears to have little in common with the smooth H‐saturated Si(100) surface prepared in ultrahigh vacuum.

583 citations

Journal ArticleDOI
TL;DR: In this paper, the formation and properties of porous silicon formed by anodising silicon under a wide range of conditions were investigated and the currentvoltage characteristics of the silicon-hydrofluoric acid system were presented.
Abstract: We report a systematic study of the formation and properties of porous silicon formed by anodising silicon under a wide range of conditions. The current-voltage characteristics of the silicon-hydrofluoric acid system are presented. The detailed microstructure of the two types of porous silicon that form depending on the dopant concentration in the silicon, were determined by cross-sectional transmission electron microscopy. A theory for the formation of porous silicon is proposed which accounts for the dependence of the microstructure on the anodising conditions. The formation of porous gallium arsenide, analogous to porous silicon, is reported for the first time.

471 citations