scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers

03 Sep 1990-Applied Physics Letters (American Institute of Physics)-Vol. 57, Iss: 10, pp 1046-1048
TL;DR: In this paper, free standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography using electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers.
Abstract: Indirect evidence is presented that free‐standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography. The novel approach uses electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers. Mesoporous Si layers of high porosity exhibit visible (red) photoluminescence at room temperature, observable with the naked eye under <1 mW unfocused (<0.1 W cm−2) green or blue laser line excitation. This is attributed to dramatic two‐dimensional quantum size effects which can produce emission far above the band gap of bulk crystalline Si.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a colloid of ultrasmall nano particles (∼ 1 nm) is reconstituted into microcrystallites films on device-quality Si. The results are analyzed in terms of second-harmonic generation, a process that is not allowed in silicon due to the centrosymmetry.
Abstract: We dispersed crystalline Si into a colloid of ultrasmall nano particles (∼1 nm), and reconstituted it into microcrystallites films on device-quality Si. The film is excited by near-infrared femtosecond two-photon process in the range 765–835 nm, with incident average power in the range 15–70 mW, focused to ∼1 μm. We have observed strong radiation at half the wavelength of the incident beam. The results are analyzed in terms of second-harmonic generation, a process that is not allowed in silicon due to the centrosymmetry. Ionic vibration of or/and excitonic self-trapping on novel radiative Si–Si dimer phase, found only in ultrasmall nanoparticles, are suggested as a basic mechanism for inducing anharmonicity that breaks the centrosymmetry.

64 citations

Journal ArticleDOI
TL;DR: In this paper, a tunable, narrow, directional, and enhanced erbium emission from one-dimensional photonic band gap structures is reported, which is based on two highly reflecting porous silicon Bragg reflectors sandwiching an active layer.
Abstract: We report tunable, narrow, directional, and enhanced erbium emission from one-dimensional photonic band gap structures. The structures are prepared by anodic etching of crystalline silicon and consist of two highly reflecting porous silicon Bragg reflectors sandwiching an active layer. The cavities are doped by cathodic electromigration of the erbium ions into the porous silicon matrix, followed by high temperature oxidation. By controlling the oxidation temperature of the structure, the position of the erbium emission near 1.5 μm is tuned to regions where the natural erbium spectrum is very weak. The erbium emission from the cavity is narrowed to a full width at half maximum of 12 nm with a quality factor Q of 130, highly directional with a 20° emission cone around the normal axis, and enhanced by more than one order of magnitude.

64 citations

Journal ArticleDOI
TL;DR: In this article, the pore-load modulus of a monolithic, mesoporous silicon membrane traversed by independent channels of ∼8nm diameter was investigated. But the pores' porosity was not considered, and the authors focused on the elastic constant associated with the Laplace pressure-induced deformation of the membrane upon capillary condensation.
Abstract: We study water adsorption-induced deformation of a monolithic, mesoporous silicon membrane traversed by independent channels of ∼8 nm diameter. We focus on the elastic constant associated with the Laplace pressure-induced deformation of the membrane upon capillary condensation, i.e., the pore-load modulus. We perform finite-element method (FEM) simulations of the adsorption-induced deformation of hexagonal and square lattices of cylindrical pores representing the membrane. We find that the pore-load modulus weakly depends on the geometrical arrangement of pores, and can be expressed as a function of porosity. We propose an analytical model which relates the pore-load modulus to the porosity and to the elastic properties of bulk silicon (Young's modulus and Poisson's ratio), and provides an excellent agreement with FEM results. We find good agreement between our experimental data and the predictions of the analytical model, with the Young's modulus of the pore walls slightly lower than the bulk value. This...

64 citations

Journal ArticleDOI
TL;DR: In this paper, the decay dynamics and quenching of the photoluminescence from Si nanocrystals were investigated, and the results were consistent with a quantum-confinement model, where recombination of el...
Abstract: The decay dynamics and the quenching of the photoluminescence (PL) from Si nanocrystals are investigated. Electron acceptors whose reduction potentials lie below the conduction band (CB) edge of the Si nanocrystals quench the red emission from the Si nanocrystals. The quenching rate constants obtained from Stern−Volmer analyses for 3,5-dinitrobenzonitrile, 4-nitrophthalonitrile, 1,4-dinitrobenzene, 4-nitrobenzonitrile, 2,3-dinitrotoluene, 3,4-dinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene are in the range of 106−107 M-1 s-1. The quenching mechanism occurs via an electron transfer from the CB band of the Si nanocrystals to the vacant orbitals of the quenchers. The PL decay profiles of the Si nanocrystals, in the presence and absence of the quencher, are well described by the stretched exponential decay law. The band gap of the Si nanocrystals estimated from the present study is larger than the PL peak energy. The results are consistent with a quantum-confinement model, where recombination of el...

64 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis and properties of low-dimensional silicon structures in SiO 2 have been analyzed, and it is shown that an efficient carrier injection at low voltages and quite intense room temperature EL signals can be achieved, due to the sensitizing action of Si nc for the rare earth.
Abstract: In the last decade, a strong effort has been devoted towards the achievement of efficient light emission from silicon. Among the different approaches, rare-earth doping and quantum confinement in Si nanostructures have shown great potentialities. In the present work, the synthesis and properties of low-dimensional silicon structures in SiO 2 will be analyzed. All of these structures present a strong room temperature optical emission, tunable in the visible by changing the crystal size. Moreover, Si nanocrystals (nc) embedded in SiO 2 together with Er ions show a strong coupling with the rare earth. Indeed each Si nc absorbs energy which is then preferentially transferred to the nearby Er ions. The signature of this interaction is the strong increase of the excitation cross section for an Er ion in the presence of Si nc with respect to a pure oxide host. We will show the properties of Er-doped Si nc embedded within Si/SiO 2 Fabry–Perot microcavities. Very narrow, intense and highly directional luminescence peaks can be obtained. Moreover, the electroluminescence (EL) properties of Si nc and Er-doped Si nc in MOS devices are investigated. It is shown that an efficient carrier injection at low voltages and quite intense room temperature EL signals can be achieved, due to the sensitizing action of Si nc for the rare earth. These data will be presented and the impact on future applications discussed.

64 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of electrolyte-semiconductor barriers are described, with emphasis on germanium, and the use of these barriers in localizing electrolytic etching is discussed.
Abstract: Properties of electrolyte-semiconductor barriers are described, with emphasis on germanium. The use of these barriers in localizing electrolytic etching is discussed. Other localization techniques are mentioned. Electrolytes for etching germanium and silicon are given.

1,039 citations

Journal ArticleDOI
TL;DR: It is found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive, which has implications for the ultimate efficiency of silicon solar cells.
Abstract: We have found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive. With preparation in this manner, the surface-recombination velocity on Si111g is only 0.25 cm/sec, which is the lowest value ever reported for any semiconductor. Multiple-internal-reflection infrared spectroscopy shows that the surface appears to be covered by covalent Si-H bonds, leaving virtually no surface dangling bonds to act as recombinatiuon centers. These results have implications for the ultimate efficiency of silicon solar cells.

910 citations

Journal ArticleDOI
TL;DR: In this paper, multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces, and these very inert surfaces are found to be almost completely covered by atomic hydrogen.
Abstract: Multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces. These very inert surfaces are found to be almost completely covered by atomic hydrogen. Results using polarized radiation on both flat and stepped Si(111) and Si(100) surfaces reveal the presence of many chemisorption sites (hydrides) that indicate that the surfaces are microscopically rough, although locally ordered. In particular, the HF‐prepared Si(100) surface appears to have little in common with the smooth H‐saturated Si(100) surface prepared in ultrahigh vacuum.

588 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured hydrogen desorption from monohydride and dihydride species on crystalline-silicon surfaces using transmission Fourier-transform infrared (FTIR) spectroscopy.
Abstract: Hydrogen desorption kinetics from monohydride and dihydride species on crystalline-silicon surfaces were measured using transmission Fourier-transform infrared (FTIR) spectroscopy. The FTIR desorption measurements were performed in situ in an ultrahigh-vacuum chamber using high-surface-area porous-silicon samples. The kinetics for hydrogen desorption from the monohydride and dihydride species was monitored using the SiH stretch mode at 2102 ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$ and the ${\mathrm{SiH}}_{2}$ scissors mode at 910 ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$, respectively. Annealing studies revealed that hydrogen from the ${\mathrm{SiH}}_{2}$ species desorbed between 640 and 700 K, whereas hydrogen from the SiH species desorbed between 720 and 800 K. Isothermal studies revealed second-order hydrogen desorption kinetics for both the monohydride and dihydride surface species. Desorption activation barriers of 65 kcal/mol (2.82 eV) and 43 kcal/mol (1.86 eV) were measured for the monohydride and dihydride species, respectively. These desorption activation barriers yield upper limits of 84.6 kcal/mol (3.67 eV) and 73.6 kcal/mol (3.19 eV) for the Si-H chemical bond energies of the SiH and ${\mathrm{SiH}}_{2}$ surface species.

479 citations