scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers

03 Sep 1990-Applied Physics Letters (American Institute of Physics)-Vol. 57, Iss: 10, pp 1046-1048
TL;DR: In this paper, free standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography using electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers.
Abstract: Indirect evidence is presented that free‐standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography. The novel approach uses electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers. Mesoporous Si layers of high porosity exhibit visible (red) photoluminescence at room temperature, observable with the naked eye under <1 mW unfocused (<0.1 W cm−2) green or blue laser line excitation. This is attributed to dramatic two‐dimensional quantum size effects which can produce emission far above the band gap of bulk crystalline Si.
Citations
More filters
Journal ArticleDOI
TL;DR: Preliminary results encourage the DSC community to explore further the galvanostatic anodizing of titanium in order to produce highly efficient porous TiO(2) NTs directly on conductive glass.
Abstract: Self-organized porous TiO(2) nanotubes (NTs) were prepared on conductive glass by galvanostatic anodizing of sputtered titanium in an NH(4)F /glycerol electrolyte. DC magnetron sputtering at an elevated substrate temperature (500 degrees C) was used to deposit 650 nm thick titanium films. After anodizing, NTs, 830 nm long, with an average external diameter of 92 nm, were grown; this gave a high conversion rate of oxide from titanium (1.9), with a 220 nm thick layer of titanium, which was not oxidized, located at the base of the tubes. The NTs revealed a mainly amorphous structure, which transformed mostly to anatase upon thermal treatment in air at 450 degrees C. The tubes were sensitized by the N719 complex and the resultant photoelectrodes were incorporated into liquid dye solar cells (DSCs) and further tested under back-side illumination. High values of V(oc) (714 mV) were obtained under 1 sun (AM 1.5), assigned to low dark current magnitude and large recombination resistance and electron lifetime. In addition, typical values of fill factors (of the order of 0.62) were attained, in agreement with the estimated ohmic resistance of the cells in combination with low electron transfer resistance at the platinum/electrolyte interface. The overall moderate power conversion efficiency (of the order of 0.3%) was mainly due to the low short-circuit photocurrents (J(sc) = 0.68 mA cm(-2)), which was confirmed further by the corresponding IPCE values (5.2% at 510 nm). The magnitude of J(sc) was attributed to absorbed light losses due to back-side illumination of the cells, the low dye loading (due to the limited thickness of anodic titania) and the high charge transfer resistance at the TiO(2)/conductive substrate due to the presence of barrier layer(s) underneath the tubes. These preliminary results encourage the DSC community to explore further the galvanostatic anodizing of titanium in order to produce highly efficient porous TiO(2) NTs directly on conductive glass. Current work is focusing on achieving complete anodizing of the metal substrate and full transparency for the photoelectrode in order to increase and optimize the resultant cell efficiencies.

54 citations

Journal ArticleDOI
TL;DR: In this article, the morphology and the electronic properties of monocrystalline Si with a nano-textured "black" surface, obtained by a metal-catalyzed wet etching process, and the improvement by an additional chemical treatment are examined with regard to solar cell applications.
Abstract: The morphology and the electronic properties of monocrystalline Si (c-Si) with a nano-textured “black” surface, obtained by a metal-catalyzed wet etching process, and the improvement by an additional chemical treatment are examined with regard to solar cell applications. Photoluminescence and optical refl ectivity measurements show the presence of a nano-porous Si (npSi) phase in the as-prepared nano-texture. It is found that an additional wet chemical treatment with the standard clean 1 of the common RCA cleaning process removes the np-Si fraction and signifi cantly alters the surface of the nano-structure. Cross-sectional scanning electron microscopy images reveal a pronounced reduction of the surface area, to values of only 3–6 times that of a planar surface. Electron spin resonance measurements were performed to investigate the type and quantity of defects induced by the nano-texturing process. The optimized nano-texture exhibits a Si dangling bond density comparable to planar c-Si wafers. Electrically detected magnetic resonance spectra reveal an additional paramagnetic defect present in the nano-textured Si, linked to a hydrogen- or oxygen-related double donor. In addition, initial results on the passivation of surface defects via atomic layer deposition of Al 2 O 3 are presented. Photoconductance decay measurements of passivated samples show a tenfold increase of the effective lifetime for nano-textures which have received the additional etching treatment. The improved electronic quality of the nano-textured surface makes it an interesting candidate for application as an anti-refl ection surface in solar cells.

54 citations

Journal ArticleDOI
TL;DR: Higher rates of proliferation are observed for the two neuronal cell types, the mouse neuroblastoma cells (N2A) and the immortalized human cortical neuronal cells (HCN1A), speculated that the higher adhesion on MeP1 could be attributed to a preferential matching of the substrate topography with the recently observed multiscale molecular architecture of focal adhesions.
Abstract: Porous silicon (PSi) is a promising material in several biomedical applications because of its biocompatibility and biodegradability. Despite the plethora of studies focusing on the interaction of cells with micrometer and submicro geometrical features, limited information is available on the response of cells to substrates with a quasi-regular distribution of nanoscopic pores. Here, the behavior of four different cell types is analyzed on two mesoporous (MeP) silicon substrates, with an average pore size of ∼5 (MeP1) and ∼20 nm (MeP2), respectively. On both MeP substrates, cells are observed to spread and adhere in a larger number as compared to flat silicon wafers. At all considered time points, the surface density of the adhering cells nd is larger on the PSi substrate with the smaller average pore size (MeP1). At 60 h, nd is from ∼1.5 to 5 times larger on MeP1 than on MeP2 substrates, depending on the cell type. The higher rates of proliferation are observed for the two neuronal cell types, the mouse ...

54 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the enhancement in conductivity by heating follows an Arrhenius law with an activation energy transition from 0.07 to 0.79 eV at ∼565 K, which originates from band tail hopping that occurs around the Fermi edge.
Abstract: Dielectric impedance measurements of porous silicon within the frequency range of 50 Hz–1.0 MHz and temperature range of 298–798 K revealed three semicircles in a Cole–Cole plot when the temperature is raised to 773 K; they are thought to correspond to contributions from the grain interior, grain boundary, and electrode/film interface, respectively. The enhancement in conductivity by heating follows an Arrhenius law with an activation energy transition from 0.07 to 0.79 eV at ∼565 K, which originates from band tail hopping that occurs around the Fermi edge. At a critical temperature, a high degree of dispersion in the real and imaginary parts of the permittivity also occurs at low frequencies. This dispersion behavior is interpreted as a combination of electron-lattice polarization associated to the band tail hopping and the crystal field weakening due to thermal expansion.

54 citations

Journal ArticleDOI
TL;DR: In this paper, an all-optical modulation based on silicon quantum dot doped SiOx:Si-QD waveguide is demonstrated, where the free-carrier absorption (FCA) cross section of Si-QDs is decreased to 8 × 10−18 cm2 by enlarging the electron/hole effective masses, which shortens the PL and Auger lifetime.
Abstract: All-optical modulation based on silicon quantum dot doped SiOx:Si-QD waveguide is demonstrated. By shrinking the Si-QD size from 4.3 nm to 1.7 nm in SiOx matrix (SiOx:Si-QD) waveguide, the free-carrier absorption (FCA) cross section of the Si-QD is decreased to 8 × 10−18 cm2 by enlarging the electron/hole effective masses, which shortens the PL and Auger lifetime to 83 ns and 16.5 ps, respectively. The FCA loss is conversely increased from 0.03 cm−1 to 1.5 cm−1 with the Si-QD size enlarged from 1.7 nm to 4.3 nm due to the enhanced FCA cross section and the increased free-carrier density in large Si-QDs. Both the FCA and free-carrier relaxation processes of Si-QDs are shortened as the radiative recombination rate is enlarged by electron–hole momentum overlapping under strong quantum confinement effect. The all-optical return-to-zero on-off keying (RZ-OOK) modulation is performed by using the SiOx:Si-QD waveguides, providing the transmission bit rate of the inversed RZ-OOK data stream conversion from 0.2 to 2 Mbit/s by shrinking the Si-QD size from 4.3 to 1.7 nm.

54 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of electrolyte-semiconductor barriers are described, with emphasis on germanium, and the use of these barriers in localizing electrolytic etching is discussed.
Abstract: Properties of electrolyte-semiconductor barriers are described, with emphasis on germanium. The use of these barriers in localizing electrolytic etching is discussed. Other localization techniques are mentioned. Electrolytes for etching germanium and silicon are given.

1,039 citations

Journal ArticleDOI
TL;DR: It is found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive, which has implications for the ultimate efficiency of silicon solar cells.
Abstract: We have found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive. With preparation in this manner, the surface-recombination velocity on Si111g is only 0.25 cm/sec, which is the lowest value ever reported for any semiconductor. Multiple-internal-reflection infrared spectroscopy shows that the surface appears to be covered by covalent Si-H bonds, leaving virtually no surface dangling bonds to act as recombinatiuon centers. These results have implications for the ultimate efficiency of silicon solar cells.

910 citations

Journal ArticleDOI
TL;DR: In this paper, multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces, and these very inert surfaces are found to be almost completely covered by atomic hydrogen.
Abstract: Multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces. These very inert surfaces are found to be almost completely covered by atomic hydrogen. Results using polarized radiation on both flat and stepped Si(111) and Si(100) surfaces reveal the presence of many chemisorption sites (hydrides) that indicate that the surfaces are microscopically rough, although locally ordered. In particular, the HF‐prepared Si(100) surface appears to have little in common with the smooth H‐saturated Si(100) surface prepared in ultrahigh vacuum.

588 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured hydrogen desorption from monohydride and dihydride species on crystalline-silicon surfaces using transmission Fourier-transform infrared (FTIR) spectroscopy.
Abstract: Hydrogen desorption kinetics from monohydride and dihydride species on crystalline-silicon surfaces were measured using transmission Fourier-transform infrared (FTIR) spectroscopy. The FTIR desorption measurements were performed in situ in an ultrahigh-vacuum chamber using high-surface-area porous-silicon samples. The kinetics for hydrogen desorption from the monohydride and dihydride species was monitored using the SiH stretch mode at 2102 ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$ and the ${\mathrm{SiH}}_{2}$ scissors mode at 910 ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$, respectively. Annealing studies revealed that hydrogen from the ${\mathrm{SiH}}_{2}$ species desorbed between 640 and 700 K, whereas hydrogen from the SiH species desorbed between 720 and 800 K. Isothermal studies revealed second-order hydrogen desorption kinetics for both the monohydride and dihydride surface species. Desorption activation barriers of 65 kcal/mol (2.82 eV) and 43 kcal/mol (1.86 eV) were measured for the monohydride and dihydride species, respectively. These desorption activation barriers yield upper limits of 84.6 kcal/mol (3.67 eV) and 73.6 kcal/mol (3.19 eV) for the Si-H chemical bond energies of the SiH and ${\mathrm{SiH}}_{2}$ surface species.

479 citations