scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers

03 Sep 1990-Applied Physics Letters (American Institute of Physics)-Vol. 57, Iss: 10, pp 1046-1048
TL;DR: In this paper, free standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography using electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers.
Abstract: Indirect evidence is presented that free‐standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography. The novel approach uses electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers. Mesoporous Si layers of high porosity exhibit visible (red) photoluminescence at room temperature, observable with the naked eye under <1 mW unfocused (<0.1 W cm−2) green or blue laser line excitation. This is attributed to dramatic two‐dimensional quantum size effects which can produce emission far above the band gap of bulk crystalline Si.
Citations
More filters
Journal ArticleDOI
30 Aug 2016-ACS Nano
TL;DR: In this article, surface nitrogen-capped Si NPs with PL quantum yield up to 90% and narrow PL bandwidth (full width at half-maximum (fwhm) ≈ 40 nm), which can compete with commercial dyes and typical quantum dots.
Abstract: Silicon nanoparticles (NPs) have been widely accepted as an alternative material for typical quantum dots and commercial organic dyes in light-emitting and bioimaging applications owing to silicon’s intrinsic merits of least toxicity, low cost, and high abundance. However, to date, how to improve Si nanoparticle photoluminescence (PL) performance (such as ultrahigh quantum yield, sharp emission peak, high stability) is still a major issue. Herein, we report surface nitrogen-capped Si NPs with PL quantum yield up to 90% and narrow PL bandwidth (full width at half-maximum (fwhm) ≈ 40 nm), which can compete with commercial dyes and typical quantum dots. Comprehensive studies have been conducted to unveil the influence of particle size, structure, and amount of surface ligand on the PL of Si NPs. Especially, a general ligand-structure-based PL energy law for surface nitrogen-capped Si NPs is identified in both experimental and theoretical analyses, and the underlying PL mechanisms are further discussed.

137 citations

Journal ArticleDOI
TL;DR: In this paper, a surface Cauchy-Born approach to modeling FCC metals with nanometer scale dimensions for which surface stresses contribute significantly to the overall mechanical response is presented. But the model is based on an extension of the traditional Cauche-Born theory in which a surface energy term that is obtained from the underlying crystal structure and governing interatomic potential is used to augment the bulk energy.
Abstract: We present a surface Cauchy-Born approach to modeling FCC metals with nanometer scale dimensions for which surface stresses contribute significantly to the overall mechanical response. The model is based on an extension of the traditional Cauchy-Born theory in which a surface energy term that is obtained from the underlying crystal structure and governing interatomic potential is used to augment the bulk energy. By doing so, solutions to three-dimensional nanomechanical boundary value problems can be found within the framework of traditional nonlinear finite element methods. The major purpose of this work is to utilize the surface Cauchy-Born model to determine surface stress effects on the minimum energy configurations of single crystal gold nanowires using embedded atom potentials on wire sizes ranging in length from $6\phantom{\rule{0.3em}{0ex}}\text{to}\phantom{\rule{0.3em}{0ex}}280\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$ with square cross sectional lengths ranging from $6\phantom{\rule{0.3em}{0ex}}\text{to}\phantom{\rule{0.3em}{0ex}}35\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$. The numerical examples clearly demonstrate that other factors beside surface area to volume ratio and total surface energy minimization, such as geometry and the percentage of transverse surface area, are critical in determining the minimum energy configurations of nanowires under the influence of surface stresses.

136 citations

Journal ArticleDOI
TL;DR: In this article, a review is devoted to the analysis of the problems related to fabrication of the Si porous layers, which is motivated by a great interest to Si-based porous materials from nano-to macroscale for various applications in electronics, optoelectronics, photonics, chemical sensors, biosensors, etc.
Abstract: This review is devoted to the analysis of the problems related to fabrication of the Si porous layers. The review was motivated by a great interest to Si-based porous materials from nano- to macro-scale for various applications in electronics, optoelectronics, photonics, chemical sensors, biosensors, etc. The peculiarities of the silicon porosification and the principles of preparing porous layers are considered in the present article. Various methods used for Si porosification such as chemical stain etching, chemical vapor etching, laser-induced etching, metal-assisted etching, spark processing and reactive ion (plasma) etching were analyzed. However, the main attention was focused on electrochemical porosification of Si. The review discusses in detail the influence of parameters such as electrolyte composition and pH, current density, etching time, temperature, wafer doping and orientation, lighting, magnetic field, and ultrasonic agitation on the process of Si porosification. It was shown that the stru...

136 citations


Cites background from "Silicon quantum wire array fabricat..."

  • ...Triggered by the papers of Canham 1 in 1990 and Lehmann and Goesele 2 in 1991, in the last decade electrochemically produced microporous silicon (μPSi) was one of the most studied materials in the field of material sciences....

    [...]

Journal ArticleDOI
TL;DR: These nanoparticles with strong blue photoluminescence could hold great potential as a non-heavy element containing quantum dot for applications in biology.
Abstract: Hydrogen capped silicon nanoparticles with strong blue photoluminescence were synthesized by the metathesis reaction of sodium silicide, NaSi, with NH4Br. The hydrogen capped Si nanoparticles were further terminated with octyl groups and then coated with a polymer to render them water soluble. The nanoparticles were characterized by TEM, FT-IR, UV-VIS absorption, and photoluminescence. The Si nanoparticles were shown to have an average diameter of 3.9 ±1.3 nm and exhibited room-temperature photoluminescence with a peak maximum at 438 nm with a quantum efficiency of 32% in hexane and 18% in water; the emission was stable in ambient air for up to 2 months. These nanoparticles could hold great potential as a non-heavy element containing quantum dot for applications in biology.

135 citations

Journal ArticleDOI
TL;DR: In this article, the structural evolution from structural disorder to order was monitored by X-ray diffraction and near-edge spectroscopy using high-level quantum mechanical calculations within the density functional theory framework.

134 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of electrolyte-semiconductor barriers are described, with emphasis on germanium, and the use of these barriers in localizing electrolytic etching is discussed.
Abstract: Properties of electrolyte-semiconductor barriers are described, with emphasis on germanium. The use of these barriers in localizing electrolytic etching is discussed. Other localization techniques are mentioned. Electrolytes for etching germanium and silicon are given.

1,039 citations

Journal ArticleDOI
TL;DR: It is found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive, which has implications for the ultimate efficiency of silicon solar cells.
Abstract: We have found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive. With preparation in this manner, the surface-recombination velocity on Si111g is only 0.25 cm/sec, which is the lowest value ever reported for any semiconductor. Multiple-internal-reflection infrared spectroscopy shows that the surface appears to be covered by covalent Si-H bonds, leaving virtually no surface dangling bonds to act as recombinatiuon centers. These results have implications for the ultimate efficiency of silicon solar cells.

910 citations

Journal ArticleDOI
TL;DR: In this paper, multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces, and these very inert surfaces are found to be almost completely covered by atomic hydrogen.
Abstract: Multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces. These very inert surfaces are found to be almost completely covered by atomic hydrogen. Results using polarized radiation on both flat and stepped Si(111) and Si(100) surfaces reveal the presence of many chemisorption sites (hydrides) that indicate that the surfaces are microscopically rough, although locally ordered. In particular, the HF‐prepared Si(100) surface appears to have little in common with the smooth H‐saturated Si(100) surface prepared in ultrahigh vacuum.

588 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured hydrogen desorption from monohydride and dihydride species on crystalline-silicon surfaces using transmission Fourier-transform infrared (FTIR) spectroscopy.
Abstract: Hydrogen desorption kinetics from monohydride and dihydride species on crystalline-silicon surfaces were measured using transmission Fourier-transform infrared (FTIR) spectroscopy. The FTIR desorption measurements were performed in situ in an ultrahigh-vacuum chamber using high-surface-area porous-silicon samples. The kinetics for hydrogen desorption from the monohydride and dihydride species was monitored using the SiH stretch mode at 2102 ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$ and the ${\mathrm{SiH}}_{2}$ scissors mode at 910 ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$, respectively. Annealing studies revealed that hydrogen from the ${\mathrm{SiH}}_{2}$ species desorbed between 640 and 700 K, whereas hydrogen from the SiH species desorbed between 720 and 800 K. Isothermal studies revealed second-order hydrogen desorption kinetics for both the monohydride and dihydride surface species. Desorption activation barriers of 65 kcal/mol (2.82 eV) and 43 kcal/mol (1.86 eV) were measured for the monohydride and dihydride species, respectively. These desorption activation barriers yield upper limits of 84.6 kcal/mol (3.67 eV) and 73.6 kcal/mol (3.19 eV) for the Si-H chemical bond energies of the SiH and ${\mathrm{SiH}}_{2}$ surface species.

479 citations