scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers

03 Sep 1990-Applied Physics Letters (American Institute of Physics)-Vol. 57, Iss: 10, pp 1046-1048
TL;DR: In this paper, free standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography using electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers.
Abstract: Indirect evidence is presented that free‐standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography. The novel approach uses electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers. Mesoporous Si layers of high porosity exhibit visible (red) photoluminescence at room temperature, observable with the naked eye under <1 mW unfocused (<0.1 W cm−2) green or blue laser line excitation. This is attributed to dramatic two‐dimensional quantum size effects which can produce emission far above the band gap of bulk crystalline Si.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a novel vapor-liquid-solid epitaxy (VLSE) process was developed to synthesize high-density semiconductor nanowire arrays with diameters of 10-200 nm and aspect ratios of 10 -100.
Abstract: A novel vapor-liquid-solid epitaxy (VLSE) process has been developed to synthesize high-density semiconductor nanowire arrays. The nanowires generally are single crystalline and have diameters of 10-200 nm and aspect ratios of 10-100. The areal density of the array can readily approach 1010 cm-2. Results based on Si and ZnO nanowire systems are reported here. Because of their single crystallinity and high surface area, these nanowire arrays could find unique applications in photocatalysis and photovoltaics.

121 citations

Journal ArticleDOI
TL;DR: In this article, an active microcavity resonator was used to achieve controlled room-temperature photoluminescence (PL) from porous silicon (PSi) multilayer structures.
Abstract: Controlled room-temperature photoluminescence (PL) and electroluminescence (EL) from porous silicon (PSi) multilayer structures are achieved. The basic structure is composed of two PSi multilayer mirrors sandwiching a highly luminescent PSi film. This creates an active microcavity resonator, in which a significant PL and EL line narrowing is observed. EL from a microcavity resonator is shown to have a high angular concentration of the output emission (30° around the normal axis). A tunable and narrow EL device, from an all-PSi microcavity resonator is presented, which offers the possibility for high spectral purity, flat-panel displays.

121 citations

Journal ArticleDOI
TL;DR: In this article, the authors used Raman scattering spectroscopy to study the temperature dependence on the size of Si nanoparticles and found that the temperature threshold for the transition from amorphous to crystalline (Tc) decreased as the particle size decreased.
Abstract: Crystallization temperature dependency on Si nanoparticles size was studied by using Raman scattering spectroscopy. Si nanoparticles synthesized by pulsed laser ablation were annealed at various temperatures while they were suspended in helium background gas, and then were classified by a differential mobility analyzer. After the size classification, Si nanoparticles showed a narrow size distribution which enabled investigation of the size-dependent crystallization. The temperature threshold for the transition from amorphous to crystalline (Tc) decreased as the particle size decreased: the Tc values of the 10, 8, 6, and 4nm particles were 1273, 1173, 1073 and 773K, respectively.

121 citations

Journal ArticleDOI
TL;DR: In this article, a variable stripe length (VSL) method was used to measure the optical gain of silicon nanocrystals formed by thermal annealing at 1250°C of SiO x films.
Abstract: Observation of optical gain in silicon nanocrystals (Si-nc) is critically dependent on a very delicate balance among the Si-nc gain cross-sections, the optical mode losses and confinement factors of the waveguide structures, the Si-nc concentration and the strongly competing fast non-radiative Auger processes. Here we report on optical gain measurements by variable stripe length (VSL) method on a set of silicon nanocrystals formed by thermal annealing at 1250°C of SiO x films with different silicon contents prepared by plasma-enhanced chemical vapour deposition. Time-resolved VSL has revealed fast component in the recombination dynamics under gain conditions. Fast lifetime narrowing and superlinear emission has been unambiguously observed. To explain our experimental results we propose a four levels recombination model. Within a phenomenological rate equations description including Auger processes and amplified spontaneous emission we obtained a satisfactory agreement with time-resolved experiments and explained the strong competition between stimulated emission and fast non-radiative Auger processes.

120 citations

Journal ArticleDOI
TL;DR: The photoluminescence decay characteristics of silicon nanocrystals in dense ensembles fabricated by ion implantation into silicon dioxide are observed to vary in proportion to the calculated local density of optical states as mentioned in this paper.
Abstract: The photoluminescence decay characteristics of silicon nanocrystals in dense ensembles fabricated by ion implantation into silicon dioxide are observed to vary in proportion to the calculated local density of optical states. A comparison of the experimental 1/e photoluminescence decay rates to the expected spontaneous emission rate modification yields values for the internal quantum efficiency and the intrinsic radiative decay rate of silicon nanocrystals. A photoluminescence quantum efficiency as high as 59%±9% is found for nanocrystals emitting at 750 nm at low excitation power. A power dependent nonradiative decay mechanism reduces the quantum efficiency at high pump intensity.

120 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of electrolyte-semiconductor barriers are described, with emphasis on germanium, and the use of these barriers in localizing electrolytic etching is discussed.
Abstract: Properties of electrolyte-semiconductor barriers are described, with emphasis on germanium. The use of these barriers in localizing electrolytic etching is discussed. Other localization techniques are mentioned. Electrolytes for etching germanium and silicon are given.

1,039 citations

Journal ArticleDOI
TL;DR: It is found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive, which has implications for the ultimate efficiency of silicon solar cells.
Abstract: We have found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive. With preparation in this manner, the surface-recombination velocity on Si111g is only 0.25 cm/sec, which is the lowest value ever reported for any semiconductor. Multiple-internal-reflection infrared spectroscopy shows that the surface appears to be covered by covalent Si-H bonds, leaving virtually no surface dangling bonds to act as recombinatiuon centers. These results have implications for the ultimate efficiency of silicon solar cells.

910 citations

Journal ArticleDOI
TL;DR: In this paper, multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces, and these very inert surfaces are found to be almost completely covered by atomic hydrogen.
Abstract: Multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces. These very inert surfaces are found to be almost completely covered by atomic hydrogen. Results using polarized radiation on both flat and stepped Si(111) and Si(100) surfaces reveal the presence of many chemisorption sites (hydrides) that indicate that the surfaces are microscopically rough, although locally ordered. In particular, the HF‐prepared Si(100) surface appears to have little in common with the smooth H‐saturated Si(100) surface prepared in ultrahigh vacuum.

588 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured hydrogen desorption from monohydride and dihydride species on crystalline-silicon surfaces using transmission Fourier-transform infrared (FTIR) spectroscopy.
Abstract: Hydrogen desorption kinetics from monohydride and dihydride species on crystalline-silicon surfaces were measured using transmission Fourier-transform infrared (FTIR) spectroscopy. The FTIR desorption measurements were performed in situ in an ultrahigh-vacuum chamber using high-surface-area porous-silicon samples. The kinetics for hydrogen desorption from the monohydride and dihydride species was monitored using the SiH stretch mode at 2102 ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$ and the ${\mathrm{SiH}}_{2}$ scissors mode at 910 ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$, respectively. Annealing studies revealed that hydrogen from the ${\mathrm{SiH}}_{2}$ species desorbed between 640 and 700 K, whereas hydrogen from the SiH species desorbed between 720 and 800 K. Isothermal studies revealed second-order hydrogen desorption kinetics for both the monohydride and dihydride surface species. Desorption activation barriers of 65 kcal/mol (2.82 eV) and 43 kcal/mol (1.86 eV) were measured for the monohydride and dihydride species, respectively. These desorption activation barriers yield upper limits of 84.6 kcal/mol (3.67 eV) and 73.6 kcal/mol (3.19 eV) for the Si-H chemical bond energies of the SiH and ${\mathrm{SiH}}_{2}$ surface species.

479 citations