scispace - formally typeset
Journal ArticleDOI: 10.1039/D0TB02687E

Silk-based hybrid microfibrous mats as guided bone regeneration membranes.

04 Mar 2021-Journal of Materials Chemistry B (The Royal Society of Chemistry)-Vol. 9, Iss: 8, pp 2025-2032
Abstract: The usage of a guided bone regeneration (GBR) membrane that prevents the ingrowth of fibroblast cells and enhances the regeneration rate is an effective strategy for bone regeneration therapy. Herein, LAPONITE® (LAP) nanoplatelets, a bioactive clay with good osteoinductivity, were incorporated within a regenerated silk fibroin (RSF) microfibrous mat via electrospinning. The as-prepared RSF-LAP hybrid microfibrous mats had an interconnected structure with pore size significantly smaller than that of the fibroblast cells, leading to an effective prevention of fibroblast cell ingrowth into the defect sites. As per the water contact angle measurements, the incorporation of LAP significantly improved the hydrophilicity of the RSF microfibrous mats. The in vitro cell experiment results show that the RSF-LAP microfibrous mats exhibited better cell adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) than the pristine RSF microfibrous mats. Moreover, the RSF-LAP microfibrous mats promoted osteogenic differentiation by upregulating alkaline phosphatase (ALP) activity and osteo-specific gene expression. Therefore, the results suggest that this easily fabricated LAP-incorporated RSF microfibrous mat has great potential to be a promising biomaterial for GBR applications.

... read more

Topics: Bone regeneration (57%)

5 results found

Journal ArticleDOI: 10.1039/D1TB00944C
Shengzhi Zou1, Xinru Wang1, Suna Fan1, Xiang Yao1  +2 moreInstitutions (1)
Abstract: Generally, electrospun silk fibroin scaffolds collected by traditional plates present limited pore size and mechanical properties, which may restrict their biomedical applications. Herein, regenerated Antheraea pernyi silk fibroin (RASF) with excellent inherent cell adhesion property was chosen as a raw material and the conductive metal meshes were used as collectors to prepare modified RASF scaffolds by electrospinning from its aqueous solution. A traditional intact plate was used as a control. The morphology and mechanical properties of the obtained scaffolds were investigated. Schwann cells were further used to assess the cytocompatibility and cell migration ability of the typical scaffolds. Interestingly, compared with the traditional intact plate, the mesh collector with an appropriate gap size (circa 7 mm) could significantly improve the pore size, porosity and mechanical properties of the RASF scaffolds simultaneously. In addition, the scaffold collected under this condition (RASF-7mmG) showed higher cell viability, deeper cell permeation and faster cell migration of Schwann cells. Combined with the excellent inherent properties of ASF and the obviously enhanced scaffold cytocompatibility and mechanical properties, the RASF-7mmG scaffold is expected to be a candidate with great potential for biomedical applications.

... read more

Topics: Fibroin (58%)

2 Citations

Journal ArticleDOI: 10.1021/ACSAMI.1C07058
He Hongzhe1, Yan Zhang1, Wenqin Zhang1, Yuanyuan Li1  +3 moreInstitutions (2)
Abstract: Developing electrocatalysts with high efficiency and long-term stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is significant to massively generate hydrogen energy by water splitting. In this work, cobalt and tungsten dual metal-loaded N-doped porous carbon electrocatalysts derived from silk fibroin were successfully prepared through facile carbonization and chemical activation by KCl and applied as efficient electrocatalysts for HER and OER. After chemical activation, the resulting catalysts present a unique hierarchical porous structure with micro-, meso-, and macropores, which is able to expose more implantation sites for catalytic active metals and will in turn promote the efficient diffusion of the electrolyte. The catalyst under the optimized condition (CoW@ACSF) has a specific area of 326.01 m2 g-1. The overpotential at a current density of 10 mA cm -2 of CoW@ACSF is 138.42 ± 10.39 mV toward HER and 492.05 ± 19.04 mV toward OER. Furthermore, the overpotential only increases 101.2 mV toward HER and 66.00 mV toward OER after the long-term stability test of chronopotentiometric test over 10 h, which confirms the excellent stability of the CoW@ACSF, owing to its unique carbon shell structure. This work gives an insight into the design and engineering of silk fibroin-derived carbon materials for electrocatalysis toward HER and OER.

... read more

Topics: Overpotential (57%), Water splitting (54%), Electrocatalyst (53%) ... show more

2 Citations

Journal ArticleDOI: 10.1016/J.MSEC.2021.112215
Wei Zhang1, Yanan Zhang1, Aini Zhang1, Chen Ling2  +4 moreInstitutions (2)
Abstract: Osteochondral defects are characterized by damage to both articular cartilage and subchondral bone. Various tissue engineering strategies have been developed for osteochondral defect repair. However, strong mechanical properties and dual-lineage (osteogenesis and chondrogenesis) bioactivity still pose challenges for current biomaterial design. Silicate nanoclay has been reported to improve the mechanical properties and biofunctionality of polymer systems, but its effect on in vitro dual-lineage differentiation or in vivo osteochondral regeneration has not been extensively investigated before. Here, a novel enzymatically crosslinked silk fibroin (SF)-Laponite (LAP) nanocomposite hydrogel was fabricated and evaluated for osteochondral regeneration. The incorporation of a small amount of LAP (1% w/v) accelerated the gelation process of SF and greatly enhanced the mechanical properties and hydrophilicity of the hydrogel. In vitro investigations showed that the developed SF-LAP hydrogel was biocompatible and was able to induce osteogenic and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), validated by Alizarin red/Alcian blue staining, qPCR, and immunofluorescent staining. During an 8-week implantation into rabbit full-thickness osteochondral defects, the SF-LAP hydrogel promoted the simultaneous and enhanced regeneration of cartilage and subchondral bone. The repaired tissue in the chondral region was constituted mainly of hyaline cartilage with typical chondrocyte morphology and cartilaginous extracellular matrix (ECM). These findings suggested that the SF-LAP nanocomposite hydrogel developed in this study served as a promising biomaterial for osteochondral regeneration due to its mechanical reinforcement and dual-lineage bioactivity.

... read more

Topics: Tissue engineering (54%), Hyaline cartilage (52%), Chondrogenesis (51%) ... show more

1 Citations


51 results found

Journal ArticleDOI: 10.1126/SCIENCE.284.5411.143
02 Apr 1999-Science
Abstract: Human mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages. Individual stem cells were identified that, when expanded to colonies, retained their multilineage potential.

... read more

19,560 Citations

Journal ArticleDOI: 10.1002/ANIE.200604646
Andreas Greiner1, Joachim H. Wendorff1Institutions (1)
23 Jul 2007-Angewandte Chemie
Abstract: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers. This technique is applicable to virtually every soluble or fusible polymer. The polymers can be chemically modified and can also be tailored with additives ranging from simple carbon-black particles to complex species such as enzymes, viruses, and bacteria. Electrospinning appears to be straightforward, but is a rather intricate process that depends on a multitude of molecular, process, and technical parameters. The method provides access to entirely new materials, which may have complex chemical structures. Electrospinning is not only a focus of intense academic investigation; the technique is already being applied in many technological areas.

... read more

Topics: Electrospinning (61%), Nanofiber (53%)

3,540 Citations

Open accessJournal ArticleDOI: 10.1021/ACS.CHEMREV.8B00593
Jiajia Xue1, Tong Wu1, Yunqian Dai2, Younan Xia1  +1 moreInstitutions (3)
27 Mar 2019-Chemical Reviews
Abstract: Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.

... read more

Topics: Nanofiber (54%), Electrospinning (51%)

1,051 Citations

Journal ArticleDOI: 10.1016/J.ADDR.2012.09.043
Abstract: Regeneration of tissues using cells, scaffolds and appropriate growth factors is a key approach in the treatments of tissue or organ failure. Silk protein fibroin can be effectively used as a scaffolding material in these treatments. Silk fibers are obtained from diverse sources such as spiders, silkworms, scorpions, mites and flies. Among them, silk of silkworms is a good source for the development of biomedical device. It possesses good biocompatibility, suitable mechanical properties and is produced in bulk in the textile sector. The unique combination of elasticity and strength along with mammalian cell compatibility makes silk fibroin an attractive material for tissue engineering. The present article discusses the processing of silk fibroin into different forms of biomaterials followed by their uses in regeneration of different tissues. Applications of silk for engineering of bone, vascular, neural, skin, cartilage, ligaments, tendons, cardiac, ocular, and bladder tissues are discussed. The advantages and limitations of silk systems as scaffolding materials in the context of biocompatibility, biodegradability and tissue specific requirements are also critically reviewed.

... read more

Topics: Fibroin (65%), SILK (53%), Tissue engineering (52%)

778 Citations

Journal ArticleDOI: 10.1002/JBM.10270
Abstract: Poor cell adhesion to orthopaedic and dental implants may result in implant failure. Cellular adhesion to biomaterial surfaces primarily is mediated by integrins, which act as signal transduction and adhesion proteins. Because integrin function depends on divalent cations, we investigated the effect of magnesium ions modified bioceramic substrata (Al(2)O(3)-Mg(2+)) on human bone-derived cell (HBDC) adhesion, integrin expression, and activation of intracellular signalling molecules. Immunohistochemistry, flow cytometry, cell adhesion, cell adhesion blocking, and Western blotting assays were used. Our findings demonstrated that adhesion of HBDC to Al(2)O(3)-Mg(2+) was increased compared to on the Mg(2+)-free Al(2)O(3). Furthermore, HBDC adhesion decreased significantly when the fibronectin receptor alpha5beta1- and beta1-integrins were blocked by functional blocking antibodies. HBDC grown on the Mg(2+)-modified bioceramic expressed significantly enhanced levels of beta1-, alpha5beta1-, and alpha3beta1-integrins receptors compared to those grown on the native unmodified Al(2)O(3). Tyrosine phosphorylation of intracellular integrin-dependent signalling proteins as well as the expression of key signalling protein Shc isoforms (p46, p52, p66), focal adhesion kinase, and extracellular matrix protein collagen type I were significantly enhanced when HBDC were grown on Al(2)O(3)-Mg(2+) compared to the native Al(2)O(3). We conclude that cell adhesion to biomaterial surfaces is probably mediated by alpha5beta1- and beta1-integrin. Cation-promoted cell adhesion depends on 5beta1- and beta1-integrins associated signal transduction pathways involving the key signalling protein Shc and results also in enhanced gene expression of extracellular matrix proteins. Therefore, Mg(2+) supplementation of bioceramic substrata may be a promising way to improve integration of implants in orthopaedic and dental surgery.

... read more

Topics: Cell adhesion molecule (64%), Cell adhesion (64%), Neural cell adhesion molecule (59%) ... show more

661 Citations