scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials.

TL;DR: The presence of carboxylate groups in CMCS not only enhanced antimicrobial activity but also enabled Ag ions chelating ability to induce the in situ formation of Ag nanoparticles (AgNPs).
About: This article is published in Materials Science and Engineering: C.The article was published on 2017-04-01. It has received 33 citations till now. The article focuses on the topics: Silver nanoparticle & Chitosan.
Citations
More filters
Journal ArticleDOI
TL;DR: The most recent applications of CMC derivatives with antimicrobial, anticancer, antitumor, antioxidant and antifungal biological activities in various areas like wound healing, tissue engineering, drug/enzyme delivery, bioimaging and cosmetics are highlighted.

373 citations

Journal ArticleDOI
TL;DR: This work describes how nanotechnology-based systems have been studied to treat S. aureus biofilms and outlines biofilm models and assays required for preclinical validation of those nanosystems to smooth the process of clinical translation.
Abstract: Staphylococcus aureus (S. aureus) is considered by the World Health Organization as a high priority pathogen for which new therapies are needed. This is particularly important for biofilm implant-associated infections once the only available treatment option implies a surgical procedure combined with antibiotic therapy. Consequently, these infections represent an economic burden for Healthcare Systems. A new strategy has emerged to tackle this problem: for small bugs, small particles. Here, we describe how nanotechnology-based systems have been studied to treat S. aureus biofilms. Their features, drawbacks and potentialities to impact the treatment of these infections are highlighted. Furthermore, we also outline biofilm models and assays required for preclinical validation of those nanosystems to smooth the process of clinical translation.

46 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a selective overview of recent advances in the use of nanocomposites as alternatives to antibiotics in antimicrobial treatments, which can be triggered by various mechanisms (such as changes in pH, light, magnetic fields, and the presence of bacterial enzymes) and improve antibacterial efficacy and reduce side effects and microbial resistance.

43 citations

Journal ArticleDOI
TL;DR: The CEAgNP nanofibers well decorated with AgNPs having good spatial distribution and excellent antibacterial performance suggests CEAgNPs as promising candidate for efficient antimicrobial activities.

41 citations

Journal ArticleDOI
TL;DR: It is believed that the asymmetric SDVG with anti-thrombotic and anti-bacterial functions could contribute to the future clinical implantation of tissue engineered vascular grafts.
Abstract: Rapid endothelialization and prevention of restenosis are two vital challenges for the preparation of a small-diameter vascular graft (SDVG), while postoperative infection after implantation is often neglected. In the present study, carboxymethyl chitosan (CMC) and chitosan (CS) were chosen as the anti-thrombotic and anti-bacterial components, respectively; and then an asymmetric vascular graft was fabricated by co-electrospinning of poly(e-caprolactone) (PCL)/CMC and PCL/CS. The mechanical properties of the asymmetric vascular graft were much better than those of the native vessels. In vitro blood compatibility tests indicated that the inner layer of the graft could inhibit thrombosis effectively. The outer layer of the graft had a certain anti-bacterial effect owing to the addition of chitosan. Besides, the inner layer of the graft could greatly promote the growth of endothelial cells. It is believed that the asymmetric SDVG with anti-thrombotic and anti-bacterial functions could contribute to the future clinical implantation of tissue engineered vascular grafts.

40 citations

References
More filters
Journal ArticleDOI
TL;DR: The reduction of [Ag(NH(3))(2)](+) by maltose produced silver particles with a narrow size distribution with an average size of 25 nm, which showed high antimicrobial and bactericidal activity against Gram-positive and Gram-negative bacteria, including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus.
Abstract: A one-step simple synthesis of silver colloid nanoparticles with controllable sizes is presented. In this synthesis, reduction of [Ag(NH3)2]+ complex cation by four saccharides was performed. Four saccharides were used: two monosaccharides (glucose and galactose) and two disaccharides (maltose and lactose). The syntheses performed at various ammonia concentrations (0.005−0.20 mol L-1) and pH conditions (11.5−13.0) produced a wide range of particle sizes (25−450 nm) with narrow size distributions, especially at the lowest ammonia concentrations. The average size, size distribution, morphology, and structure of particles were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and UV/Visible absorption spectrophotometry. The influence of the saccharide structure (monosacharides versus disaccharides) on the size of silver particles is briefly discussed. The reduction of [Ag(NH3)2]+ by maltose produced silver particles with a narrow size distribution with an average size of ...

2,184 citations

Journal ArticleDOI
TL;DR: This work suggests that AgNP morphological properties known to affect antimicrobial activity are indirect effectors that primarily influence Ag(+) release, and antibacterial activity could be controlled by modulating Ag(+ release, possibly through manipulation of oxygen availability, particle size, shape, and/or type of coating.
Abstract: For nearly a decade, researchers have debated the mechanisms by which AgNPs exert toxicity to bacteria and other organisms. The most elusive question has been whether the AgNPs exert direct “particle-specific” effects beyond the known antimicrobial activity of released silver ions (Ag+). Here, we infer that Ag+ is the definitive molecular toxicant. We rule out direct particle-specific biological effects by showing the lack of toxicity of AgNPs when synthesized and tested under strictly anaerobic conditions that preclude Ag(0) oxidation and Ag+ release. Furthermore, we demonstrate that the toxicity of various AgNPs (PEG- or PVP- coated, of three different sizes each) accurately follows the dose–response pattern of E. coli exposed to Ag+ (added as AgNO3). Surprisingly, E. coli survival was stimulated by relatively low (sublethal) concentration of all tested AgNPs and AgNO3 (at 3–8 μg/L Ag+, or 12–31% of the minimum lethal concentration (MLC)), suggesting a hormetic response that would be counterproductive t...

1,785 citations

Journal ArticleDOI
TL;DR: The preparation and properties of innovative chitosan-based biomaterials, with respect to their future applications, are highlighted, with a special focus on wound healing application.

1,694 citations

Journal ArticleDOI
TL;DR: The results of the present study suggest that silver ions may cause S. aureus and E. coli bacteria to reach an ABNC state and eventually die.
Abstract: The antibacterial effect and mechanism of action of a silver ion solution that was electrically generated were investigated for Staphylococcus aureus and Escherichia coli by analyzing the growth, morphology, and ultrastructure of the bacterial cells following treatment with the silver ion solution. Bacteria were exposed to the silver ion solution for various lengths of time, and the antibacterial effect of the solution was tested using the conventional plate count method and flow cytometric (FC) analysis. Reductions of more than 5 log10 CFU/ml of both S. aureus and E. coli bacteria were confirmed after 90 min of treatment with the silver ion solution. Significant reduction of S. aureus and E. coli cells was also observed by FC analysis; however, the reduction rate determined by FC analysis was less than that determined by the conventional plate count method. These differences may be attributed to the presence of bacteria in an active but nonculturable (ABNC) state after treatment with the silver ion solution. Transmission electron microscopy showed considerable changes in the bacterial cell membranes upon silver ion treatment, which might be the cause or consequence of cell death. In conclusion, the results of the present study suggest that silver ions may cause S. aureus and E. coli bacteria to reach an ABNC state and eventually die.

1,616 citations

Journal ArticleDOI
TL;DR: Electron microscopy analysis of thin sections of the fungal cells indicated that the silver particles were formed below the cell wall surface, possibly due to reduction of the metal ions by enzymes present in the cell walls membrane.
Abstract: A novel biological method for the synthesis of silver nanoparticles using the fungus Verticillium is reported. Exposure of the fungal biomass to aqueous Ag+ ions resulted in the intracellular reduction of the metal ions and formation of silver nanoparticles of dimensions 25 ± 12 nm. Electron microscopy analysis of thin sections of the fungal cells indicated that the silver particles were formed below the cell wall surface, possibly due to reduction of the metal ions by enzymes present in the cell wall membrane. The metal ions were not toxic to the fungal cells and the cells continued to multiply after biosynthesis of the silver nanoparticles.

1,207 citations