scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity

TL;DR: This overview incorporates a retrospective of previous reviews published from 2007 to 2013 and recent original contributions on the progress of research on antimicrobial mechanisms to summarize the current knowledge in the field of antibacterial activity of silver nanoparticles.
About: This article is published in Nanomedicine: Nanotechnology, Biology and Medicine.The article was published on 2016-04-01. It has received 1055 citations till now. The article focuses on the topics: Silver nanoparticle.
Citations
More filters
Journal ArticleDOI
TL;DR: This review focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based Nanostructure.
Abstract: During the past few years, silver nanoparticles (AgNPs) became one of the most investigated and explored nanotechnology-derived nanostructures, given the fact that nanosilver-based materials proved to have interesting, challenging, and promising characteristics suitable for various biomedical applications. Among modern biomedical potential of AgNPs, tremendous interest is oriented toward the therapeutically enhanced personalized healthcare practice. AgNPs proved to have genuine features and impressive potential for the development of novel antimicrobial agents, drug-delivery formulations, detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration and regeneration materials, complex healthcare condition strategies, and performance-enhanced therapeutic alternatives. Given the impressive biomedical-related potential applications of AgNPs, impressive efforts were undertaken on understanding the intricate mechanisms of their biological interactions and possible toxic effects. Within this review, we focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based nanostructures.

773 citations


Cites background from "Silver nanoparticles: A new view on..."

  • ...The intrinsic biocide or biostatic activity of AgNPs is strongly influenced by different physicochemical features, including morphology, size, oxidation and dissolution states, surface charge, and surface coating [37,40]....

    [...]

Journal ArticleDOI
TL;DR: The recent advances in green synthesis of silver nanoparticles, their application as antimicrobial agents and mechanism of antimicrobial mode of action are discussed.
Abstract: Since discovery of the first antibiotic drug, penicillin, in 1928, a variety of antibiotic and antimicrobial agents have been developed and used for both human therapy and industrial applications. However, excess and uncontrolled use of antibiotic agents has caused a significant growth in the number of drug resistant pathogens. Novel therapeutic approaches replacing the inefficient antibiotics are in high demand to overcome increasing microbial multidrug resistance. In the recent years, ongoing research has focused on development of nano-scale objects as efficient antimicrobial therapies. Among the various nanoparticles, silver nanoparticles have gained much attention due to their unique antimicrobial properties. However, concerns about the synthesis of these materials such as use of precursor chemicals and toxic solvents, and generation of toxic byproducts have led to a new alternative approach, green synthesis. This eco-friendly technique incorporates use of biological agents, plants or microbial agents as reducing and capping agents. Silver nanoparticles synthesized by green chemistry offer a novel and potential alternative to chemically synthesized nanoparticles. In this review, we discuss the recent advances in green synthesis of silver nanoparticles, their application as antimicrobial agents and mechanism of antimicrobial mode of action.

579 citations

Journal ArticleDOI
TL;DR: The potential antibacterial mechanisms ofAgNPs are analyzed, and the influences of AgNPs on osteogenic-related cells, including cellular adhesion, proliferation, and differentiation, were discussed.
Abstract: Infection, as a common postoperative complication of orthopedic surgery, is the main reason leading to implant failure. Silver nanoparticles (AgNPs) are considered as a promising antibacterial agent and always used to modify orthopedic implants to prevent infection. To optimize the implants in a reasonable manner, it is critical for us to know the specific antibacterial mechanism, which is still unclear. In this review, we analyzed the potential antibacterial mechanisms of AgNPs, and the influences of AgNPs on osteogenic-related cells, including cellular adhesion, proliferation, and differentiation, were also discussed. In addition, methods to enhance biocompatibility of AgNPs as well as advanced implants modifications technologies were also summarized.

574 citations


Cites background from "Silver nanoparticles: A new view on..."

  • ...Many research studies have investigated the antimicrobial activity of AgNPs, but the possible antibiotic mechanisms and potential hazard are still unclear.(14,15) Castiglioni et al concluded that AgNPs cause cytotoxicity in various cell lines in a Correspondence: He Liu; Yanguo Qin Orthopaedic Medical Center, The Second Hospital of Jilin University, No 218 of Ziqiang Street, Changchun, Jilin 130041, People’s Republic of China email heliu@ciac....

    [...]

Journal ArticleDOI
TL;DR: This review illustrates the antibacterial mechanisms of silver nanoparticles and further elucidates how different structural factors including surface chemistry, size, and shape, impact their antibacterial activities, which are expected to promote the future development of more potent silver nanoparticle‐based antibacterial agents.
Abstract: The increase of antibiotic resistance in bacteria has become a major concern for successful diagnosis and treatment of infectious diseases. Over the past few decades, significant progress has been achieved on the development of nanotechnology-based medicines for combating multidrug resistance in microorganisms. Among this, silver nanoparticles (AgNPs) hold great promise in addressing this challenge due to their broad-spectrum and robust antimicrobial properties. This review illustrates the antibacterial mechanisms of silver nanoparticles and further elucidates how different structural factors including surface chemistry, size, and shape, impact their antibacterial activities, which are expected to promote the future development of more potent silver nanoparticle-based antibacterial agents.

558 citations

Journal ArticleDOI
TL;DR: The use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this, so the current research on nanoparticles and other nanomaterials are summarized.
Abstract: Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.

533 citations


Cites background from "Silver nanoparticles: A new view on..."

  • ...The entry of AgNPs induces ROS that will inhibit ATP production and DNA replication (Zhang et al., 2013; Dakal et al., 2016; Durán et al., 2016; Ramalingam et al., 2016)....

    [...]

  • ...01441/full[19/07/2018 09:38:33] the antibacterial mechanism of AgNPs is still not completely understood (Franci et al., 2015; Durán et al., 2016)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.
Abstract: Nanotechnology is expected to open new avenues to fight and prevent disease using atomic scale tailoring of materials. Among the most promising nanomaterials with antibacterial properties are metallic nanoparticles, which exhibit increased chemical activity due to their large surface to volume ratios and crystallographic surface structure. The study of bactericidal nanomaterials is particularly timely considering the recent increase of new resistant strains of bacteria to the most potent antibiotics. This has promoted research in the well known activity of silver ions and silver-based compounds, including silver nanoparticles. The present work studies the effect of silver nanoparticles in the range of 1-100 nm on Gram-negative bacteria using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). Our results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.

5,609 citations

Journal ArticleDOI
TL;DR: These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

5,309 citations

Journal ArticleDOI
TL;DR: The results suggest that Ag nanoparticles can be used as effective growth inhibitors in various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.

4,319 citations

Journal ArticleDOI
TL;DR: Known mechanisms of microbial resistance (both intrinsic and acquired) to biocides are reviewed, with emphasis on the clinical implications of these reports.
Abstract: Antiseptics and disinfectants are extensively used in hospitals and other health care settings for a variety of topical and hard-surface applications A wide variety of active chemical agents (biocides) are found in these products, many of which have been used for hundreds of years, including alcohols, phenols, iodine, and chlorine Most of these active agents demonstrate broad-spectrum antimicrobial activity; however, little is known about the mode of action of these agents in comparison to antibiotics This review considers what is known about the mode of action and spectrum of activity of antiseptics and disinfectants The widespread use of these products has prompted some speculation on the development of microbial resistance, in particular whether antibiotic resistance is induced by antiseptics or disinfectants Known mechanisms of microbial resistance (both intrinsic and acquired) to biocides are reviewed, with emphasis on the clinical implications of these reports

4,243 citations

Journal ArticleDOI
TL;DR: This is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and the results demonstrate thatsilver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.
Abstract: In this work we investigated the antibacterial properties of differently shaped silver nanoparticles against the gram-negative bacterium Escherichia coli, both in liquid systems and on agar plates. Energy-filtering transmission electron microscopy images revealed considerable changes in the cell membranes upon treatment, resulting in cell death. Truncated triangular silver nanoplates with a {111} lattice plane as the basal plane displayed the strongest biocidal action, compared with spherical and rod-shaped nanoparticles and with Ag+ (in the form of AgNO3). It is proposed that nanoscale size and the presence of a {111} plane combine to promote this biocidal property. To our knowledge, this is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and our results demonstrate that silver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.

3,697 citations

Trending Questions (1)
What is the Antimicrobial mechanism of action of silver nanoparticles?

The exact mechanism of action of silver nanoparticles as antimicrobial agents is still not completely known.