scispace - formally typeset
Journal ArticleDOI

Silver nanoparticles: behaviour and effects in the aquatic environment.

Reads0
Chats0
TLDR
The ecotoxicological literature shows that concentrations of Ag NPs below the current and future PECs, as low as just a few ng L(-1), can affect prokaryotes, invertebrates and fish indicating a significant potential, though poorly characterised, risk to the environment.
About
This article is published in Environment International.The article was published on 2011-02-01. It has received 1115 citations till now.

read more

Citations
More filters
Journal ArticleDOI

Environmental transformations of silver nanoparticles: impact on stability and toxicity.

TL;DR: In this paper, the major transformation processes of Ag-NPs in various aqueous environments, particularly transformations of the metallic Ag cores caused by reactions with (in)organic ligands, and the effects of such transformations on physical and chemical stability and toxicity are discussed.
Journal ArticleDOI

Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology.

TL;DR: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz .
Journal ArticleDOI

Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review

TL;DR: The toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.
Journal ArticleDOI

Antibacterial activity of silver nanoparticles: A surface science insight

TL;DR: In this paper, the main parameters that will affect the surface state of nanoparticles and their influence on antimicrobial efficacy are reviewed and an analysis of several works on Ag NPs activity, observed through the scope of an oxidative Ag+ release.
Journal ArticleDOI

Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications.

TL;DR: A critical assessment of the current understanding of silver nanoparticle toxicity is provided and a set of pointers and guidelines for experimental design of future studies to assess the environmental and biological impacts of nanosilver are provided.
References
More filters
Journal ArticleDOI

Toxic Potential of Materials at the Nanolevel

TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Journal ArticleDOI

Understanding biophysicochemical interactions at the nano–bio interface

TL;DR: Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Journal ArticleDOI

The bactericidal effect of silver nanoparticles

TL;DR: The results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.
Journal ArticleDOI

Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria

TL;DR: These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.
Journal ArticleDOI

Antimicrobial effects of silver nanoparticles

TL;DR: The results suggest that Ag nanoparticles can be used as effective growth inhibitors in various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.
Related Papers (5)