scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives

TL;DR: This article aims to review the synthesis routes and antimicrobial effects of Ag-NPs against various pathogens including bacteria, fungi and virus in environments containing infectious pathogens.
Abstract: In recent years the outbreak of re-emerging and emerging infectious diseases has been a significant burden on global economies and public health. The growth of population and urbanization along with poor water supply and environmental hygiene are the main reasons for the increase in outbreak of infectious pathogens. Transmission of infectious pathogens to the community has caused outbreaks of diseases such as influenza (A/H5N1), diarrhea (Escherichia coli), cholera (Vibrio cholera), etc throughout the world. The comprehensive treatments of environments containing infectious pathogens using advanced disinfectant nanomaterials have been proposed for prevention of the outbreaks. Among these nanomaterials, silver nanoparticles (Ag-NPs) with unique properties of high antimicrobial activity have attracted much interest from scientists and technologists to develop nanosilver-based disinfectant products. This article aims to review the synthesis routes and antimicrobial effects of Ag-NPs against various pathogens including bacteria, fungi and virus. Toxicology considerations of Ag-NPs to humans and ecology are discussed in detail. Some current applications of Ag-NPs in water-, air- and surface- disinfection are described. Finally, future prospects of Ag-NPs for treatment and prevention of currently emerging infections are discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles.

1,904 citations


Additional excerpts

  • ...Different organic and inorganic reducing agents, such as sodium borohydride (NaBH4), sodium citrate, ascorbate, elemental hydrogen, Tollen’s reagent, N,N-dimethyl formamide (DMF) and poly (ethylene glycol) block copolymers are used for reduction of silver ions (Ag) in aqueous or non-aqueous solutions [10,11]....

    [...]

Journal ArticleDOI
TL;DR: It is believed that silver nanoparticles can be engineered so as to increase their efficacy, stability, specificity, biosafety and biocompatibility, and ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to human cells upon AgNPs exposure.
Abstract: Multidrug resistance of the pathogenic microorganisms to the antimicrobial drugs has become a major impediment toward successful diagnosis and management of infectious diseases. Recent advancements in nanotechnology-based medicines have opened new horizons for combating multidrug resistance in microorganisms. In particular, the use of silver nanoparticles (AgNPs) as a potent antibacterial agent has received much attention. The most critical physico-chemical parameters that affect the antimicrobial potential of AgNPs include size, shape, surface charge, concentration and colloidal state. AgNPs exhibits their antimicrobial potential through multifaceted mechanisms. AgNPs adhesion to microbial cells, penetration inside the cells, ROS and free radical generation, and modulation of microbial signal transduction pathways have been recognized as the most prominent modes of antimicrobial action. On the other side, AgNPs exposure to human cells induces cytotoxicity, genotoxicity and inflammatory response in human cells in a cell-type dependent manner. This has raised concerns regarding use of AgNPs in therapeutics and drug delivery. We have summarized the emerging endeavors that address current challenges in relation to safe use of AgNPs in therapeutics and drug delivery platforms. Based on research done so far, we believe that AgNPs can be engineered so as to increase their efficacy, stability, specificity, biosafety and biocompatibility. In this regard, three perspectives research directions have been suggested that include 1) synthesizing AgNPs with controlled physico-chemical properties, 2) examining microbial development of resistance towards AgNPs, and 3) ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to human cells upon AgNPs exposure.

1,112 citations


Cites background from "Silver nanoparticles: synthesis, pr..."

  • ...Other biomedical applications of AgNPs include impregnation of catheters and cardiovascular and bone implants with AgNPs for inhibiting biofilm formation and minimizing the chances of pathogenic growth (Tran et al., 2013)....

    [...]

  • ...…long-term cytotoxicity, mutagenicity and carcinogenicity studies should be conducted in order to verify any adverse effects that may occurs during their use in therapeutics and drug delivery (Becker et al., 2011; Maneewattanapinyo et al., 2011; Klien and Godnic-Cvar, 2012; Tran et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: This review aimed to elucidate different properties of Ag-NPs that are responsible for the induction of cellular toxicity along with the critical mechanism of action and subsequent defense mechanisms observed in vitro.

704 citations

Journal ArticleDOI
TL;DR: Methods of synthesizing AgNPs are introduced and their physicochemical, localized surface plasmon resonance (LSPR) and toxicity properties are discussed, highlighting the newly emerging applications ofAgNPs as antiviral agents, photosensitizer and/or radiosensitizers, and anticancer therapeutic agents.

681 citations


Cites background from "Silver nanoparticles: synthesis, pr..."

  • ...Therapeutic applications of AgNPs The function of AgNPs as antibacterial and antifungal agents has been well documented [54,55] and is not discussed here....

    [...]

Journal ArticleDOI
TL;DR: This review describes the methods of green synthesis for Ag-NPs and their numerous applications and describes the comparison of efficient synthesis methods via green routes over physical and chemical methods, which provide strong evidence for the selection of suitable method for the synthesis of Ag-Ns.
Abstract: Development of reliable and eco-accommodating methods for the synthesis of nanoparticles is a vital step in the field of nanotechnology. Silver nanoparticles are important because of their exceptional chemical, physical, and biological properties, and hence applications. In the last decade, numerous efforts were made to develop green methods of synthesis to avoid the hazardous byproducts. This review describes the methods of green synthesis for Ag-NPs and their numerous applications. It also describes the comparison of efficient synthesis methods via green routes over physical and chemical methods, which provide strong evidence for the selection of suitable method for the synthesis of Ag-NPs.

502 citations


Cites background from "Silver nanoparticles: synthesis, pr..."

  • ...…non-aqueous solutions are used for the reduction of Ag ions, for example, poly-ethylene glycol block copolymers, sodium citrate, Tollen’s reagent, Ascorbate, essential hydrogen, N,N-dimethyl formamide (DMF), and sodium borohydride (NaBH4) (Tran and Le 2013; Guzm an et al. 2009; Chou and Ren 2000)....

    [...]

  • ...…Muhammad Rafique mrafique.uet@gmail.com Department of Physics, University of Engineering and Technology, Lahore, Pakistan 2016 Informa UK Limited, trading as Taylor & Francis Group a calibration tool and NP generator for long-term experiments for inward breath toxicity studies (Tran and Le 2013)....

    [...]

References
More filters
Journal ArticleDOI
13 Dec 2002-Science
TL;DR: Monodisperse samples of silver nanocubes were synthesized in large quantities by reducing silver nitrate with ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP), characterized by a slightly truncated shape bounded by {100, {110}, and {111} facets.
Abstract: Monodisperse samples of silver nanocubes were synthesized in large quantities by reducing silver nitrate with ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP). These cubes were single crystals and were characterized by a slightly truncated shape bounded by {100}, {110}, and {111} facets. The presence of PVP and its molar ratio (in terms of repeating unit) relative to silver nitrate both played important roles in determining the geometric shape and size of the product. The silver cubes could serve as sacrificial templates to generate single-crystalline nanoboxes of gold: hollow polyhedra bounded by six {100} and eight {111} facets. Controlling the size, shape, and structure of metal nanoparticles is technologically important because of the strong correlation between these parameters and optical, electrical, and catalytic properties.

5,992 citations

Journal ArticleDOI
21 Feb 2008-Nature
TL;DR: It is concluded that global resources to counter disease emergence are poorly allocated, with the majority of the scientific and surveillance effort focused on countries from where the next important EID is least likely to originate.
Abstract: Emerging infectious diseases (EIDs) are a significant burden on global economies and public health. Their emergence is thought to be driven largely by socio-economic, environmental and ecological factors, but no comparative study has explicitly analysed these linkages to understand global temporal and spatial patterns of EIDs. Here we analyse a database of 335 EID 'events' (origins of EIDs) between 1940 and 2004, and demonstrate non-random global patterns. EID events have risen significantly over time after controlling for reporting bias, with their peak incidence (in the 1980s) concomitant with the HIV pandemic. EID events are dominated by zoonoses (60.3% of EIDs): the majority of these (71.8%) originate in wildlife (for example, severe acute respiratory virus, Ebola virus), and are increasing significantly over time. We find that 54.3% of EID events are caused by bacteria or rickettsia, reflecting a large number of drug-resistant microbes in our database. Our results confirm that EID origins are significantly correlated with socio-economic, environmental and ecological factors, and provide a basis for identifying regions where new EIDs are most likely to originate (emerging disease 'hotspots'). They also reveal a substantial risk of wildlife zoonotic and vector-borne EIDs originating at lower latitudes where reporting effort is low. We conclude that global resources to counter disease emergence are poorly allocated, with the majority of the scientific and surveillance effort focused on countries from where the next important EID is least likely to originate.

5,992 citations

Journal ArticleDOI
TL;DR: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems.
Abstract: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems. Substantial progress in the size and shape control of magnetic nanoparticles has been made by developing methods such as co-precipitation, thermal decomposition and/or reduction, micelle synthesis, and hydrothermal synthesis. A major challenge still is protection against corrosion, and therefore suitable protection strategies will be emphasized, for example, surfactant/polymer coating, silica coating and carbon coating of magnetic nanoparticles or embedding them in a matrix/support. Properly protected magnetic nanoparticles can be used as building blocks for the fabrication of various functional systems, and their application in catalysis and biotechnology will be briefly reviewed. Finally, some future trends and perspectives in these research areas will be outlined.

5,956 citations

Journal ArticleDOI
TL;DR: The results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.
Abstract: Nanotechnology is expected to open new avenues to fight and prevent disease using atomic scale tailoring of materials. Among the most promising nanomaterials with antibacterial properties are metallic nanoparticles, which exhibit increased chemical activity due to their large surface to volume ratios and crystallographic surface structure. The study of bactericidal nanomaterials is particularly timely considering the recent increase of new resistant strains of bacteria to the most potent antibiotics. This has promoted research in the well known activity of silver ions and silver-based compounds, including silver nanoparticles. The present work studies the effect of silver nanoparticles in the range of 1-100 nm on Gram-negative bacteria using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). Our results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.

5,609 citations

Journal ArticleDOI
TL;DR: These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

5,309 citations