scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities

TL;DR: It is demonstrated in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B cell lineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions.
About: This article is published in Molecular Cell.The article was published on 2010-05-28 and is currently open access. It has received 9620 citations till now. The article focuses on the topics: Pioneer factor & General transcription factor.
Citations
More filters
Journal ArticleDOI
27 Mar 2014-Nature
TL;DR: It is shown that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity.
Abstract: Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

2,260 citations


Cites methods from "Simple Combinations of Lineage-Dete..."

  • ...These were grouped according to Hela-S3 expression tertiles: low (36), mid-level (41) and strong (46)....

    [...]

Journal ArticleDOI
04 Jun 2015-Cell
TL;DR: In a unified mechanism of m(6)A-based regulation in the cytoplasm, YTHDF2-mediated degradation controls the lifetime of target transcripts, whereasYTHDF1-mediated translation promotion increases translation efficiency, ensuring effective protein production from dynamic transcripts that are marked by m( 6)A.

2,179 citations

01 Apr 2013
TL;DR: It is reported here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state, which consist of clusters of enhancers that are densely occupied by the master regulators and Mediator.
Abstract: Master transcription factors Oct4, Sox2, and Nanog bind enhancer elements and recruit Mediator to activate much of the gene expression program of pluripotent embryonic stem cells (ESCs). We report here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state. These domains, which we call super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. Super-enhancers thus play key roles in the control of mammalian cell identity.

2,075 citations

Posted ContentDOI
02 Nov 2018-bioRxiv
TL;DR: This work presents a strategy for comprehensive integration of single cell data, including the assembly of harmonized references, and the transfer of information across datasets, and demonstrates how anchoring can harmonize in-situ gene expression and scRNA-seq datasets.
Abstract: Single cell transcriptomics (scRNA-seq) has transformed our ability to discover and annotate cell types and states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, including high-dimensional immunophenotypes, chromatin accessibility, and spatial positioning, a key analytical challenge is to integrate these datasets into a harmonized atlas that can be used to better understand cellular identity and function. Here, we develop a computational strategy to "anchor" diverse datasets together, enabling us to integrate and compare single cell measurements not only across scRNA-seq technologies, but different modalities as well. After demonstrating substantial improvement over existing methods for data integration, we anchor scRNA-seq experiments with scATAC-seq datasets to explore chromatin differences in closely related interneuron subsets, and project single cell protein measurements onto a human bone marrow atlas to annotate and characterize lymphocyte populations. Lastly, we demonstrate how anchoring can harmonize in-situ gene expression and scRNA-seq datasets, allowing for the transcriptome-wide imputation of spatial gene expression patterns, and the identification of spatial relationships between mapped cell types in the visual cortex. Our work presents a strategy for comprehensive integration of single cell data, including the assembly of harmonized references, and the transfer of information across datasets. Availability: Installation instructions, documentation, and tutorials are available at: https://www.satijalab.org/seurat

2,037 citations


Cites methods from "Simple Combinations of Lineage-Dete..."

  • ...We searched for overrepresented DNA sequence motifs in accessible regions using the Homer package [Heinz et al., 2010], using the findMotifsGenome....

    [...]

Journal ArticleDOI
TL;DR: This work discusses how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data and develops a set of working standards and guidelines for ChIP experiments that are updated routinely.
Abstract: Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals.

1,801 citations

References
More filters
Journal ArticleDOI
18 May 2007-Cell
TL;DR: High-resolution maps for the genome-wide distribution of 20 histone lysine and arginine methylations as well as histone variant H2A.Z, RNA polymerase II, and the insulator binding protein CTCF across the human genome using the Solexa 1G sequencing technology are generated.

6,488 citations


"Simple Combinations of Lineage-Dete..." refers background or methods in this paper

  • ...…positions, DNase hypersensitivity, and mononucleosomal ChIP-Seq for a wide range of histone modifications are available, allowing precise determination of nucleosome positions, chromatin accessibility, and histone modifications (Barski et al., 2007; Boyle et al., 2008; Schones et al., 2008)....

    [...]

  • ...In this cell type, genome-wide data for nucleosome positions, DNase hypersensitivity, and mononucleosomal ChIP-Seq for a wide range of histone modifications are available, allowing precise determination of nucleosome positions, chromatin accessibility, and histone modifications (Barski et al., 2007; Boyle et al., 2008; Schones et al., 2008)....

    [...]

  • ...1 Binding Programs in Macrophages and B Cells We initially performed chromatin immunoprecipitation-coupled deep sequencing (ChIP-Seq) (Barski et al., 2007) to define the PU....

    [...]

  • ..., 2008), human CD4 T cells (Barski et al., 2007), and CD36 erythrocyte precursors (Cui et al....

    [...]

  • ...…other cell types, we performed de novo motif analysis on H3K4me1/H3K4me3 ChIP-Seq data sets from mouse embryonic stem cells (Meissner et al., 2008; Mikkelsen et al., 2007), liver (Wederell et al., 2008), human CD4+ T cells (Barski et al., 2007), and CD36+ erythrocyte precursors (Cui et al., 2009)....

    [...]

Journal ArticleDOI
02 Aug 2007-Nature
TL;DR: The application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells is reported and it is shown that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms.
Abstract: We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences Lysine 4 and lysine 9 trimethylation marks imprinting control regions Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations

4,166 citations


"Simple Combinations of Lineage-Dete..." refers methods in this paper

  • ...To determine whether there is an analogous relationship between promoter-distal H3K4me1 and binding sites for transcription factors in other cell types, we performed de novo motif analysis on H3K4me1/H3K4me3 ChIP-Seq data sets from mouse embryonic stem cells (Meissner et al., 2008; Mikkelsen et al., 2007), liver (Wederell et al....

    [...]

  • ...…other cell types, we performed de novo motif analysis on H3K4me1/H3K4me3 ChIP-Seq data sets from mouse embryonic stem cells (Meissner et al., 2008; Mikkelsen et al., 2007), liver (Wederell et al., 2008), human CD4+ T cells (Barski et al., 2007), and CD36+ erythrocyte precursors (Cui et al., 2009)....

    [...]

Journal ArticleDOI
06 Mar 1992-Cell
TL;DR: The introduction of a mutation in RAG-1 into the germline of mice via gene targeting in embryonic stem cells is described and it is shown that this mutation either activates or catalyzes the V(D)J recombination reaction of immunoglobulin and T cell receptor genes.

2,821 citations


"Simple Combinations of Lineage-Dete..." refers background in this paper

  • ...…in B lineage progenitors devoid of both E2A and EBF (E2A / ), EBF only (EBF / ), or control cells that express both factors (Rag1 / ), which are arrested at successive stages in B cell development (Dias et al., 2008; Ikawa et al., 2004; Lin and Grosschedl, 1995; Mombaerts et al., 1992) (Figure 1A)....

    [...]

  • ...We addressed this question in B lineage progenitors devoid of both E2A and EBF (E2A / ), EBF only (EBF / ), or control cells that express both factors (Rag1 / ), which are arrested at successive stages in B cell development (Dias et al., 2008; Ikawa et al., 2004; Lin and Grosschedl, 1995; Mombaerts et al., 1992) (Figure 1A)....

    [...]

Journal ArticleDOI
13 Jun 2008-Cell
TL;DR: This study uses chromatin immunoprecipitation coupled with ultra-high-throughput DNA sequencing to map the locations of TF-binding sites and identifies important features of the transcriptional regulatory networks that define ES-cell identity.

2,519 citations


"Simple Combinations of Lineage-Dete..." refers background in this paper

  • ...This model offers an explanation for the extensive genome-wide and cell typespecific colocalization of transcription factors observed in various previous studies (Chen et al., 2008; MacArthur et al., 2009) and provides insights into how simple combinations of lineage-restricted transcription factors on a genome-wide scale can specify promoter-distal cis-regulatory elements ultimately responsible for both cell identity and cell type-specific responses to diverse signaling inputs....

    [...]

  • ...…an explanation for the extensive genome-wide and cell typespecific colocalization of transcription factors observed in various previous studies (Chen et al., 2008; MacArthur et al., 2009) and provides insights into how simple combinations of lineage-restricted transcription factors on a…...

    [...]

  • ...Comparisons of the genome-wide binding patterns of different transcription factors in a variety of species and cell types have generated two major insights regarding transcription factor binding patterns: (1) different factors in the same cell type tend to colocalize on a genome-wide scale (Chen et al., 2008; MacArthur et al., 2009), and (2) the same factor in different cell types or at different stages of development exhibits different genome-wide binding patterns (Lupien et al....

    [...]

  • ...…insights regarding transcription factor binding patterns: (1) different factors in the same cell type tend to colocalize on a genome-wide scale (Chen et al., 2008; MacArthur et al., 2009), and (2) the same factor in different cell types or at different stages of development exhibits different…...

    [...]

Journal ArticleDOI
07 Aug 2008-Nature
TL;DR: Low-throughput reduced representation bisulphite sequencing is established as a powerful technology for epigenetic profiling of cell populations relevant to developmental biology, cancer and regenerative medicine.
Abstract: DNA methylation is essential for normal development and has been implicated in many pathologies including cancer. Our knowledge about the genome-wide distribution of DNA methylation, how it changes during cellular differentiation and how it relates to histone methylation and other chromatin modifications in mammals remains limited. Here we report the generation and analysis of genome-scale DNA methylation profiles at nucleotide resolution in mammalian cells. Using high-throughput reduced representation bisulphite sequencing and single-molecule-based sequencing, we generated DNA methylation maps covering most CpG islands, and a representative sampling of conserved non-coding elements, transposons and other genomic features, for mouse embryonic stem cells, embryonic-stem-cell-derived and primary neural cells, and eight other primary tissues. Several key findings emerge from the data. First, DNA methylation patterns are better correlated with histone methylation patterns than with the underlying genome sequence context. Second, methylation of CpGs are dynamic epigenetic marks that undergo extensive changes during cellular differentiation, particularly in regulatory regions outside of core promoters. Third, analysis of embryonic-stem-cell-derived and primary cells reveals that 'weak' CpG islands associated with a specific set of developmentally regulated genes undergo aberrant hypermethylation during extended proliferation in vitro, in a pattern reminiscent of that reported in some primary tumours. More generally, the results establish reduced representation bisulphite sequencing as a powerful technology for epigenetic profiling of cell populations relevant to developmental biology, cancer and regenerative medicine.

2,482 citations


"Simple Combinations of Lineage-Dete..." refers methods in this paper

  • ...To determine whether there is an analogous relationship between promoter-distal H3K4me1 and binding sites for transcription factors in other cell types, we performed de novo motif analysis on H3K4me1/H3K4me3 ChIP-Seq data sets from mouse embryonic stem cells (Meissner et al., 2008; Mikkelsen et al., 2007), liver (Wederell et al....

    [...]

  • ...…factors in other cell types, we performed de novo motif analysis on H3K4me1/H3K4me3 ChIP-Seq data sets from mouse embryonic stem cells (Meissner et al., 2008; Mikkelsen et al., 2007), liver (Wederell et al., 2008), human CD4+ T cells (Barski et al., 2007), and CD36+ erythrocyte…...

    [...]