scispace - formally typeset
Search or ask a question
Posted Content

Simple Exchange-Correlation Energy Functionals for Strongly Coupled Light-Matter Systems based on the Fluctuation-Dissipation Theorem

TL;DR: In this paper, the gradient-based density functional for the QEDFT exchange-correlation energy derived from the adiabatic-connection fluctuation-dissipation theorem was introduced.
Abstract: Recent experimental advances in strongly coupled light-matter systems has sparked the development of general ab-initio methods capable of describing interacting light-matter systems from first principles. One of these methods, quantum-electrodynamical density-functional theory (QEDFT), promises computationally efficient calculations for large correlated light-matter systems with the quality of the calculation depending on the underlying approximation for the exchange-correlation functional. So far no true density-functional approximation has been introduced limiting the efficient application of the theory. In this paper, we introduce the first gradient-based density functional for the QEDFT exchange-correlation energy derived from the adiabatic-connection fluctuation-dissipation theorem. We benchmark this simple-to-implement approximation on small systems in optical cavities and demonstrate its relatively low computational costs for fullerene molecules up to C$_{180}$ coupled to 400,000 photon modes in a dissipative optical cavity. This work now makes first principle calculations of much larger systems possible within the QEDFT framework effectively combining quantum optics with large-scale electronic structure theory.
Citations
More filters
Journal ArticleDOI
21 Jun 2022
TL;DR: In this article , the Langevin framework is proposed based on well-established methods from molecular dynamics for cavity-induced non-equilibrium nuclear dynamics, where thermal (stochastic) resonance phenomena could emerge in the absence of external periodic driving.
Abstract: This Perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry, which emerges from the hybrid nature of strongly coupled light-matter states. To tackle this complexity, the importance of ab initio methods is highlighted. Based on those, novel ideas and research avenues are developed with respect to quantum collectivity, as well as for resonance phenomena immanent in reaction rates under vibrational strong coupling. Indeed, fundamental theoretical questions arise about the mesoscopic scale of quantum-collectively coupled molecules when considering the depolarization shift in the interpretation of experimental data. Furthermore, to rationalize recent findings based on quantum electrodynamical density-functional theory (QEDFT), a simple, but computationally efficient, Langevin framework is proposed based on well-established methods from molecular dynamics. It suggests the emergence of cavity-induced non-equilibrium nuclear dynamics, where thermal (stochastic) resonance phenomena could emerge in the absence of external periodic driving. Overall, we believe that the latest ab initio results indeed suggest a paradigmatic shift for ground-state chemical reactions under vibrational strong coupling from the collective quantum interpretation toward a more local, (semi)-classically and non-equilibrium dominated perspective. Finally, various extensions toward a refined description of cavity-modified chemistry are introduced in the context of QEDFT, and future directions of the field are sketched.

23 citations

Journal ArticleDOI
TL;DR: In this article , a cavity quantum electrodynamics (QED) generalization of time-dependent density functional theory was developed and demonstrated computationally that strong light-matter coupling can alter the de of the chiral group-directed photoisomerization of BINOL.
Abstract: The enantiopurification of racemic mixtures of chiral molecules is important for a range of applications. Recent work has shown that chiral group-directed photoisomerization is a promising approach to enantioenrich racemic mixtures of BINOL, but increased control of the diasteriomeric excess (de) is necessary for its broad utility. Here we develop a cavity quantum electrodynamics (QED) generalization of time-dependent density functional theory and demonstrate computationally that strong light-matter coupling can alter the de of the chiral group-directed photoisomerization of BINOL. The relative orientation of the cavity mode polarization and the molecules in the cavity dictates the nature of the cavity interactions, which either enhance the de of the (R)-BINOL diasteriomer (from 17% to ≈40%) or invert the favorability to the (S)-BINOL derivative (to ≈34% de). The latter outcome is particularly remarkable because it indicates that the preference in diasteriomer can be influenced via orientational control, without changing the chirality of the directing group. We demonstrate that the observed effect stems from cavity-induced changes to the Kohn-Sham orbitals of the ground state.

9 citations

Journal ArticleDOI
TL;DR: In this article , the quantum-electrodynamical time-dependent density functional theory equations are solved by time propagating the wave function on a tensor product of a Fock-space and real-space grid.
Abstract: The quantum-electrodynamical time-dependent density functional theory equations are solved by time propagating the wave function on a tensor product of a Fock-space and real-space grid. Applications for molecules in cavities show the accuracy of the approach. Examples include the coupling strength and light frequency dependence of the energies, wave functions, optical absorption spectra, and Rabi splitting magnitudes in cavities, as well as a description of high harmonic generation in cavities.

6 citations

Journal ArticleDOI
TL;DR: In this article, a nonperturbative photon-free formulation of quantum electrodynamics (QED) in the long-wavelength limit is provided, which is formulated solely on the matter Hilbert space and can serve as an accurate starting point for such ab initio methods.
Abstract: Strong light-matter coupling provides a promising path for the control of quantum matter where the latter is routinely described from first principles. However, combining the quantized nature of light with this ab initio tool set is challenging and merely developing as the coupled light-matter Hilbert space is conceptually different and computational cost quickly becomes overwhelming. In this work, we provide a nonperturbative photon-free formulation of quantum electrodynamics (QED) in the long-wavelength limit, which is formulated solely on the matter Hilbert space and can serve as an accurate starting point for such ab initio methods. The present formulation is an extension of quantum mechanics that recovers the exact results of QED for the zero- and infinite-coupling limit and the infinite-frequency as well as the homogeneous limit, and we can constructively increase its accuracy. We show how this formulation can be used to devise approximations for quantum-electrodynamical density-functional theory (QEDFT), which in turn also allows us to extend the ansatz to the full minimal-coupling problem and to nonadiabatic situations. Finally, we provide a simple local density-type functional that takes the strong coupling to the transverse photon degrees of freedom into account and includes the correct frequency and polarization dependence. This QEDFT functional accounts for the quantized nature of light while remaining computationally simple enough to allow its application to a large range of systems. All approximations allow the seamless application to periodic systems.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the authors consider two types of calculations, relaxed and unrelaxed QED-EOM-CC, and show that the latter is more accurate than the former.
Abstract: Cavity quantum electrodynamics (QED) generalizations of time-dependent (TD) density functional theory (DFT) and equation-of-motion (EOM) coupled-cluster (CC) theory are used to model small molecules strongly coupled to optical cavity modes. We consider two types of calculations. In the first approach (termed "relaxed"), we use a coherent-state-transformed Hamiltonian within the ground- and excited-state portions of the calculations, and cavity-induced orbital relaxation effects are included at the mean-field level. This procedure guarantees that the energy is origin-invariant in post-self-consistent-field calculations. In the second approach (termed "unrelaxed"), we ignore the coherent-state transformation and the associated orbital relaxation effects. In this case, ground-state unrelaxed QED-CC calculations pick up a modest origin dependence but otherwise reproduce relaxed QED-CC results within the coherent-state basis. On the other hand, a severe origin dependence manifests in ground-state unrelaxed QED mean-field energies. For excitation energies computed at experimentally realizable coupling strengths, relaxed and unrelaxed QED-EOM-CC results are similar, while significant differences emerge for unrelaxed and relaxed QED-TDDFT. First, QED-EOM-CC and relaxed QED-TDDFT both predict that electronic states that are not resonant with the cavity mode are nonetheless perturbed by the cavity. Unrelaxed QED-TDDFT, on the other hand, fails to capture this effect. Second, in the limit of large coupling strengths, relaxed QED-TDDFT tends to overestimate Rabi splittings, while unrelaxed QED-TDDFT underestimates them, given splittings from relaxed QED-EOM-CC as a reference, and relaxed QED-TDDFT generally does the better job of reproducing the QED-EOM-CC results.
References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Abstract: From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. These methods are exact for systems of slowly varying or high density. For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock equations, respectively. In these equations the exchange and correlation portions of the chemical potential of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective potential differs from that due to Slater by a factor of $\frac{2}{3}$.) Electronic systems at finite temperatures and in magnetic fields are also treated by similar methods. An appendix deals with a further correction for systems with short-wavelength density oscillations.

47,477 citations

Journal ArticleDOI
Axel D. Becke1
TL;DR: This work reports a gradient-corrected exchange-energy functional, containing only one parameter, that fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.
Abstract: Current gradient-corrected density-functional approximations for the exchange energies of atomic and molecular systems fail to reproduce the correct 1/r asymptotic behavior of the exchange-energy density. Here we report a gradient-corrected exchange-energy functional with the proper asymptotic limit. Our functional, containing only one parameter, fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.

45,683 citations

Journal ArticleDOI
TL;DR: In this article, the ground state of an interacting electron gas in an external potential was investigated and it was proved that there exists a universal functional of the density, called F[n(mathrm{r})], independent of the potential of the electron gas.
Abstract: This paper deals with the ground state of an interacting electron gas in an external potential $v(\mathrm{r})$. It is proved that there exists a universal functional of the density, $F[n(\mathrm{r})]$, independent of $v(\mathrm{r})$, such that the expression $E\ensuremath{\equiv}\ensuremath{\int}v(\mathrm{r})n(\mathrm{r})d\mathrm{r}+F[n(\mathrm{r})]$ has as its minimum value the correct ground-state energy associated with $v(\mathrm{r})$. The functional $F[n(\mathrm{r})]$ is then discussed for two situations: (1) $n(\mathrm{r})={n}_{0}+\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}(\mathrm{r})$, $\frac{\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}}{{n}_{0}}\ensuremath{\ll}1$, and (2) $n(\mathrm{r})=\ensuremath{\phi}(\frac{\mathrm{r}}{{r}_{0}})$ with $\ensuremath{\phi}$ arbitrary and ${r}_{0}\ensuremath{\rightarrow}\ensuremath{\infty}$. In both cases $F$ can be expressed entirely in terms of the correlation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of these methods are presented.

38,160 citations

Journal ArticleDOI
TL;DR: In this paper, the self-interaction correction (SIC) of any density functional for the ground-state energy is discussed. But the exact density functional is strictly selfinteraction-free (i.e., orbitals demonstrably do not selfinteract), but many approximations to it, including the local spin-density (LSD) approximation for exchange and correlation, are not.
Abstract: The exact density functional for the ground-state energy is strictly self-interaction-free (i.e., orbitals demonstrably do not self-interact), but many approximations to it, including the local-spin-density (LSD) approximation for exchange and correlation, are not. We present two related methods for the self-interaction correction (SIC) of any density functional for the energy; correction of the self-consistent one-electron potenial follows naturally from the variational principle. Both methods are sanctioned by the Hohenberg-Kohn theorem. Although the first method introduces an orbital-dependent single-particle potential, the second involves a local potential as in the Kohn-Sham scheme. We apply the first method to LSD and show that it properly conserves the number content of the exchange-correlation hole, while substantially improving the description of its shape. We apply this method to a number of physical problems, where the uncorrected LSD approach produces systematic errors. We find systematic improvements, qualitative as well as quantitative, from this simple correction. Benefits of SIC in atomic calculations include (i) improved values for the total energy and for the separate exchange and correlation pieces of it, (ii) accurate binding energies of negative ions, which are wrongly unstable in LSD, (iii) more accurate electron densities, (iv) orbital eigenvalues that closely approximate physical removal energies, including relaxation, and (v) correct longrange behavior of the potential and density. It appears that SIC can also remedy the LSD underestimate of the band gaps in insulators (as shown by numerical calculations for the rare-gas solids and CuCl), and the LSD overestimate of the cohesive energies of transition metals. The LSD spin splitting in atomic Ni and $s\ensuremath{-}d$ interconfigurational energies of transition elements are almost unchanged by SIC. We also discuss the admissibility of fractional occupation numbers, and present a parametrization of the electron-gas correlation energy at any density, based on the recent results of Ceperley and Alder.

16,027 citations