scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Simplified calculation of eigenvector derivatives

01 Sep 1976-AIAA Journal (American Institute of Aeronautics and Astronautics (AIAA))-Vol. 14, Iss: 9, pp 1201-1205
TL;DR: A simplified procedure is presented for the determination of the derivatives of eigenvectors of nth order algebraic eigensystems, applicable to symmetric or nonsymmetric systems, and requires knowledge of only one eigenvalue and its associated right and left eigenavectors.
Abstract: A simplified procedure is presented for the determination of the derivatives of eigenvectors of nth order algebraic eigensystems. The method is applicable to symmetric or nonsymmetric systems, and requires knowledge of only one eigenvalue and its associated right and left eigenvectors. In the procedure, the matrix of the original eigensystem of rank (/?-!) is modified to convert it to a matrix of rank /?, which then is solved directly for a vector which, together with the eigenvector, gives the eigenvector derivative to within an arbitrary constant. The norm of the eigenvector is used to determine this constant and complete the calculation. The method is simple, since the modified n rank matrix is formed without matrix multiplication or extensive manipulation. Since the matrix has the same bandedness as the original eigensystems, it can be treated efficiently using the same banded equation solution algorithms that are used to find the eigenvectors.
Citations
More filters
Book
01 Jan 2011
TL;DR: This chapter discusses Optimization Techniques, which are used in Linear Programming I and II, and Nonlinear Programming II, which is concerned with One-Dimensional Minimization.
Abstract: Preface. 1 Introduction to Optimization. 1.1 Introduction. 1.2 Historical Development. 1.3 Engineering Applications of Optimization. 1.4 Statement of an Optimization Problem. 1.5 Classification of Optimization Problems. 1.6 Optimization Techniques. 1.7 Engineering Optimization Literature. 1.8 Solution of Optimization Problems Using MATLAB. References and Bibliography. Review Questions. Problems. 2 Classical Optimization Techniques. 2.1 Introduction. 2.2 Single-Variable Optimization. 2.3 Multivariable Optimization with No Constraints. 2.4 Multivariable Optimization with Equality Constraints. 2.5 Multivariable Optimization with Inequality Constraints. 2.6 Convex Programming Problem. References and Bibliography. Review Questions. Problems. 3 Linear Programming I: Simplex Method. 3.1 Introduction. 3.2 Applications of Linear Programming. 3.3 Standard Form of a Linear Programming Problem. 3.4 Geometry of Linear Programming Problems. 3.5 Definitions and Theorems. 3.6 Solution of a System of Linear Simultaneous Equations. 3.7 Pivotal Reduction of a General System of Equations. 3.8 Motivation of the Simplex Method. 3.9 Simplex Algorithm. 3.10 Two Phases of the Simplex Method. 3.11 MATLAB Solution of LP Problems. References and Bibliography. Review Questions. Problems. 4 Linear Programming II: Additional Topics and Extensions. 4.1 Introduction. 4.2 Revised Simplex Method. 4.3 Duality in Linear Programming. 4.4 Decomposition Principle. 4.5 Sensitivity or Postoptimality Analysis. 4.6 Transportation Problem. 4.7 Karmarkar's Interior Method. 4.8 Quadratic Programming. 4.9 MATLAB Solutions. References and Bibliography. Review Questions. Problems. 5 Nonlinear Programming I: One-Dimensional Minimization Methods. 5.1 Introduction. 5.2 Unimodal Function. ELIMINATION METHODS. 5.3 Unrestricted Search. 5.4 Exhaustive Search. 5.5 Dichotomous Search. 5.6 Interval Halving Method. 5.7 Fibonacci Method. 5.8 Golden Section Method. 5.9 Comparison of Elimination Methods. INTERPOLATION METHODS. 5.10 Quadratic Interpolation Method. 5.11 Cubic Interpolation Method. 5.12 Direct Root Methods. 5.13 Practical Considerations. 5.14 MATLAB Solution of One-Dimensional Minimization Problems. References and Bibliography. Review Questions. Problems. 6 Nonlinear Programming II: Unconstrained Optimization Techniques. 6.1 Introduction. DIRECT SEARCH METHODS. 6.2 Random Search Methods. 6.3 Grid Search Method. 6.4 Univariate Method. 6.5 Pattern Directions. 6.6 Powell's Method. 6.7 Simplex Method. INDIRECT SEARCH (DESCENT) METHODS. 6.8 Gradient of a Function. 6.9 Steepest Descent (Cauchy) Method. 6.10 Conjugate Gradient (Fletcher-Reeves) Method. 6.11 Newton's Method. 6.12 Marquardt Method. 6.13 Quasi-Newton Methods. 6.14 Davidon-Fletcher-Powell Method. 6.15 Broyden-Fletcher-Goldfarb-Shanno Method. 6.16 Test Functions. 6.17 MATLAB Solution of Unconstrained Optimization Problems. References and Bibliography. Review Questions. Problems. 7 Nonlinear Programming III: Constrained Optimization Techniques. 7.1 Introduction. 7.2 Characteristics of a Constrained Problem. DIRECT METHODS. 7.3 Random Search Methods. 7.4 Complex Method. 7.5 Sequential Linear Programming. 7.6 Basic Approach in the Methods of Feasible Directions. 7.7 Zoutendijk's Method of Feasible Directions. 7.8 Rosen's Gradient Projection Method. 7.9 Generalized Reduced Gradient Method. 7.10 Sequential Quadratic Programming. INDIRECT METHODS. 7.11 Transformation Techniques. 7.12 Basic Approach of the Penalty Function Method. 7.13 Interior Penalty Function Method. 7.14 Convex Programming Problem. 7.15 Exterior Penalty Function Method. 7.16 Extrapolation Techniques in the Interior Penalty Function Method. 7.17 Extended Interior Penalty Function Methods. 7.18 Penalty Function Method for Problems with Mixed Equality and Inequality Constraints. 7.19 Penalty Function Method for Parametric Constraints. 7.20 Augmented Lagrange Multiplier Method. 7.21 Checking the Convergence of Constrained Optimization Problems. 7.22 Test Problems. 7.23 MATLAB Solution of Constrained Optimization Problems. References and Bibliography. Review Questions. Problems. 8 Geometric Programming. 8.1 Introduction. 8.2 Posynomial. 8.3 Unconstrained Minimization Problem. 8.4 Solution of an Unconstrained Geometric Programming Program Using Differential Calculus. 8.5 Solution of an Unconstrained Geometric Programming Problem Using Arithmetic-Geometric Inequality. 8.6 Primal-Dual Relationship and Sufficiency Conditions in the Unconstrained Case. 8.7 Constrained Minimization. 8.8 Solution of a Constrained Geometric Programming Problem. 8.9 Primal and Dual Programs in the Case of Less-Than Inequalities. 8.10 Geometric Programming with Mixed Inequality Constraints. 8.11 Complementary Geometric Programming. 8.12 Applications of Geometric Programming. References and Bibliography. Review Questions. Problems. 9 Dynamic Programming. 9.1 Introduction. 9.2 Multistage Decision Processes. 9.3 Concept of Suboptimization and Principle of Optimality. 9.4 Computational Procedure in Dynamic Programming. 9.5 Example Illustrating the Calculus Method of Solution. 9.6 Example Illustrating the Tabular Method of Solution. 9.7 Conversion of a Final Value Problem into an Initial Value Problem. 9.8 Linear Programming as a Case of Dynamic Programming. 9.9 Continuous Dynamic Programming. 9.10 Additional Applications. References and Bibliography. Review Questions. Problems. 10 Integer Programming. 10.1 Introduction 588. INTEGER LINEAR PROGRAMMING. 10.2 Graphical Representation. 10.3 Gomory's Cutting Plane Method. 10.4 Balas' Algorithm for Zero-One Programming Problems. INTEGER NONLINEAR PROGRAMMING. 10.5 Integer Polynomial Programming. 10.6 Branch-and-Bound Method. 10.7 Sequential Linear Discrete Programming. 10.8 Generalized Penalty Function Method. 10.9 Solution of Binary Programming Problems Using MATLAB. References and Bibliography. Review Questions. Problems. 11 Stochastic Programming. 11.1 Introduction. 11.2 Basic Concepts of Probability Theory. 11.3 Stochastic Linear Programming. 11.4 Stochastic Nonlinear Programming. 11.5 Stochastic Geometric Programming. References and Bibliography. Review Questions. Problems. 12 Optimal Control and Optimality Criteria Methods. 12.1 Introduction. 12.2 Calculus of Variations. 12.3 Optimal Control Theory. 12.4 Optimality Criteria Methods. References and Bibliography. Review Questions. Problems. 13 Modern Methods of Optimization. 13.1 Introduction. 13.2 Genetic Algorithms. 13.3 Simulated Annealing. 13.4 Particle Swarm Optimization. 13.5 Ant Colony Optimization. 13.6 Optimization of Fuzzy Systems. 13.7 Neural-Network-Based Optimization. References and Bibliography. Review Questions. Problems. 14 Practical Aspects of Optimization. 14.1 Introduction. 14.2 Reduction of Size of an Optimization Problem. 14.3 Fast Reanalysis Techniques. 14.4 Derivatives of Static Displacements and Stresses. 14.5 Derivatives of Eigenvalues and Eigenvectors. 14.6 Derivatives of Transient Response. 14.7 Sensitivity of Optimum Solution to Problem Parameters. 14.8 Multilevel Optimization. 14.9 Parallel Processing. 14.10 Multiobjective Optimization. 14.11 Solution of Multiobjective Problems Using MATLAB. References and Bibliography. Review Questions. Problems. A Convex and Concave Functions. B Some Computational Aspects of Optimization. B.1 Choice of Method. B.2 Comparison of Unconstrained Methods. B.3 Comparison of Constrained Methods. B.4 Availability of Computer Programs. B.5 Scaling of Design Variables and Constraints. B.6 Computer Programs for Modern Methods of Optimization. References and Bibliography. C Introduction to MATLAB(R) . C.1 Features and Special Characters. C.2 Defining Matrices in MATLAB. C.3 CREATING m-FILES. C.4 Optimization Toolbox. Answers to Selected Problems. Index .

3,283 citations

Book
01 Jan 1999
TL;DR: 1. Preliminary concepts of one dimensional unconstrained minimization, unconstrained optimization, linear programming, and finite element based optimization are presented.
Abstract: In this revised and enhanced second edition of Optimization Concepts and Applications in Engineering, the already robust pedagogy has been enhanced with more detailed explanations, an increased number of solved examples and end-of-chapter problems. The source codes are now available free on multiple platforms. It is vitally important to meet or exceed previous quality and reliability standards while at the same time reducing resource consumption. This textbook addresses this critical imperative integrating theory, modeling, the development of numerical methods, and problem solving, thus preparing the student to apply optimization to real-world problems. This text covers a broad variety of optimization problems using: unconstrained, constrained, gradient, and non-gradient techniques; duality concepts; multiobjective optimization; linear, integer, geometric, and dynamic programming with applications; and finite element-based optimization. It is ideal for advanced undergraduate or graduate courses and for practising engineers in all engineering disciplines, as well as in applied mathematics.

576 citations

Journal ArticleDOI
TL;DR: In this paper, a survey of sensitivity derivatives for discrete structural systems is presented, primarily focusing on publications developed in nonstructural fields such as electronics, control, and physical chemistry which are directly applicable to structural problems.
Abstract: Methods for calculating sensitivity derivatives for discrete structural systems are surveyed, primarily covering literature published during the past two decades. Methods are described for calculating derivatives of static displacements and stresses, eigenvalues and eigenvectors, transient structural response, and derivatives of optimum structural designs with respect to problem parameters. The survey is focused on publications developed in nonstructural fields such as electronics, controls, and physical chemistry which are directly applicable to structural problems. Most notable among the nonstructural-based methods are the adjoint variable technique from control theory, and the Green's function and FAST methods from physical chemistry.

489 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a brief survey on some of the most relevant developments in the field of optimization under uncertainty, including reliability-based optimization, robust design optimization and model updating.

487 citations


Cites background from "Simplified calculation of eigenvect..."

  • ...[111,147]) can play an important role in constructing approximate representations of the structural response, e....

    [...]

Journal ArticleDOI
TL;DR: A description is given of new tools to facilitate model building and refinement into electron cryo-microscopy reconstructions.
Abstract: The recent rapid development of single-particle electron cryo-microscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 A. Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC.

477 citations

References
More filters
Book
01 Jan 1965
TL;DR: Theoretical background Perturbation theory Error analysis Solution of linear algebraic equations Hermitian matrices Reduction of a general matrix to condensed form Eigenvalues of matrices of condensed forms The LR and QR algorithms Iterative methods Bibliography.
Abstract: Theoretical background Perturbation theory Error analysis Solution of linear algebraic equations Hermitian matrices Reduction of a general matrix to condensed form Eigenvalues of matrices of condensed forms The LR and QR algorithms Iterative methods Bibliography Index.

7,422 citations

Journal ArticleDOI
TL;DR: Exact expressions for rates of change of eigenvalues and eigenvector to facilitate computerized design of complex structures are presented.
Abstract: Exact expressions for rates of change of eigenvalues and eigenvector to facilitate computerized design of complex structures

1,094 citations

Journal ArticleDOI
TL;DR: In this paper, a method is formulated for systematically using experimental measurements of the natural frequencies and mode shapes of a structure to modify stiffness and mass characteristics of a finite element model, and an additional feature is that the engineer's confidence in the modeling of the various finite elements is quantified and incorporated into the revision procedure.
Abstract: A method is formulated for systematically using experimental measurements of the natural frequencies and mode shapes of a structure to modify stiffness and mass characteristics of a finite element model. Throughout the modification process, which does not require complete data, the finite element model remains consistent. An additional feature is that the engineer's confidence in the modeling of the various finite elements is quantified and incorporated into the revision procedure. Examples demonstrate the convergence and versatility of the method.

430 citations

Journal ArticleDOI
TL;DR: Haida gwaii tourism guide, Handbook of raman spectroscopy, and the Jordan form, Kronecker's form for matrix pencils, and various condition in the Handbook.
Abstract: Haida gwaii tourism guide · Handbook of raman spectroscopy free download Handbook for automatic computation vol 2 linear algebra pdf · How much does. the Jordan form, Kronecker's form for matrix pencils, and various condition in the Handbook (Handbook for Automatic Computation, vol. II, Linear Algebra. War II Stiefel, as an officer of the Swiss Army, had to For some sparse matrix problems the code for the (Handbook for Automatic Computation, Vol. la).

253 citations