scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers.

20 Apr 2003-Applied Optics (Optical Society of America)-Vol. 42, Iss: 12, pp 2043-2051
TL;DR: This work presents what is to their knowledge the first near-infrared diode-laser-based absorption spectrometer that is suitable for simultaneous in situ measurement of carbon monoxide, water vapor, and temperature in the combustion chamber of a 600-MW lignite-fired power plant.
Abstract: We present what is to our knowledge the first near-infrared diode-laser-based absorption spectrometer that is suitable for simultaneous in situ measurement of carbon monoxide, water vapor, and temperature in the combustion chamber (20-m diameter, 13-m path length) of a 600-MW lignite-fired power plant. A fiber-coupled distributed-feedback diode-laser module at 1.56 microm served for CO detection, and a Fabry-Perot diode laser at 813 nm was used to determine H2O concentrations and temperature from multiline water spectra. Despite severe light losses (transmission, <10(-8)) and strong background radiation we achieved a resolution of 1.9 x 10(-4) (1sigma) fractional absorption, equivalent to 200 parts in 10(6) by volume of CO (at 1450 K, 10(5) Pa) with 30-s averaging time.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the development, application, and current capabilities of infrared laser-absorption spectroscopy (IR-LAS) sensors for combustion gases can be found in this paper.

438 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: In this article, the authors highlight three areas where quantitative sensing based on laser absorption has had strong influence: chemical kinetics, propulsion, and practical energy systems, and provide an overview of the current power and future potential of these modern diagnostic tools.
Abstract: Laser diagnostic techniques play a large and growing role in combustion research and development. Here we highlight three areas where quantitative sensing based on laser absorption has had strong influence: chemical kinetics, propulsion, and practical energy systems. In the area of chemical kinetics, measurements in shock tubes of high-temperature reaction rate coefficients using species-specific laser absorption techniques have provided new and accurate answers to questions about combustion chemical processes. In the area of propulsion, wide-bandwidth measurements of flow temperatures, species concentrations, and velocity have provided engine designers with the necessary information to improve operation and performance. In the area of practical energy systems, real-time measurements of combustor operating conditions and emissions have enabled needed incremental improvements in large power plants and improved safety of operation. Yet, there is still more to be done, and opportunities for new applications will grow as laser sensors evolve. This review seeks to provide an overview of the current power and future potential of these modern diagnostic tools.

313 citations

Journal ArticleDOI
01 Jan 2005
TL;DR: The potential of combustion diagnostics has been discussed in this article, highlighting selected application examples and guiding the reader to recent literature, in particular, techniques which permit measurement of important features of the chemical composition, sometimes in conjunction with flow field parameters.
Abstract: Fifty years after the foundation of the Combustion Institute and almost 150 years after Michael Faraday's famous lectures on the combustion of a candle, combustion diagnostics have come a long way from visual inspection of a flame to detailed analysis of a combustion process with a multitude of sophisticated techniques, often using lasers. The extended knowledge on combustion phenomena gained by application of these diagnostic techniques, combined with equally advanced numerical simulation of the process, has been instrumental in designing modern combustion devices with efficient performance and reduced pollutant emission. Also, similar diagnostic techniques are now employed to develop sensors for process control in combustion. This article intends to give a perspective on the potential of combustion diagnostics by highlighting selected application examples and by guiding the reader to recent literature. In particular, techniques are emphasized, which permit measurement of important features of the chemical composition, sometimes in conjunction with flow field parameters. Although a complete image of present research and applications in combustion diagnostics and control is beyond the scope of this article, this overview may be a starting place where ideas may be found to solve specific combustion problems with the aid of diagnostics. (Less)

299 citations

Journal ArticleDOI
TL;DR: The effects of the nonideal performance parameters of commercial diode lasers are especially important away from the line center of discrete spectra, and these contributions become more pronounced for 2f signals with the large modulation depths needed for WMS at elevated pressures.
Abstract: Tunable diode laser absorption measurements at high pressures by use of wavelength-modulation spectroscopy (WMS) require large modulation depths for optimum detection of molecular absorption spectra blended by collisional broadening or dense spacing of the rovibrational transitions. Diode lasers have a large and nonlinear intensity modulation when the wavelength is modulated over a large range by injection-current tuning. In addition to this intensity modulation, other laser performance parameters are measured, including the phase shift between the frequency modulation and the intensity modulation. Following published theory, these parameters are incorporated into an improved model of the WMS signal. The influence of these nonideal laser effects is investigated by means of wavelength-scanned WMS measurements as a function of bath gas pressure on rovibrational transitions of water vapor near 1388 nm. Lock-in detection of the magnitude of the 2f signal is performed to remove the dependence on detection phase. We find good agreement between measurements and the improved model developed for the 2f component of the WMS signal. The effects of the nonideal performance parameters of commercial diode lasers are especially important away from the line center of discrete spectra, and these contributions become more pronounced for 2f signals with the large modulation depths needed for WMS at elevated pressures.

298 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the techniques proposed in the literature for the monitoring of flames, either applied to or conceived for monitoring of practical combustion equipment, dealing respectively with optical sensors, imaging techniques, pressure transducers and probing methods.

295 citations

References
More filters
Journal ArticleDOI
TL;DR: The data and features that have been added or replaced since the previous edition of HITRAN are described, including instances of critical data that are forthcoming.
Abstract: Since its first publication in 1973, the HITRAN molecular spectroscopic database has been recognized as the international standard for providing the necessary fundamental spectroscopic parameters for diverse atmospheric and laboratory transmission and radiance calculations. There have been periodic editions of HITRAN over the past decades as the database has been expanded and improved with respect to the molecular species and spectral range covered, the number of parameters included, and the accuracy of this information. The 1996 edition not only includes the customary line-by-line transition parameters familiar to HITRAN users, but also cross-section data, aerosol indices of refraction, software to filter and manipulate the data, and documentation. This paper describes the data and features that have been added or replaced since the previous edition of HITRAN. We also cite instances of critical data that are forthcoming.

1,846 citations

Journal ArticleDOI
TL;DR: The HITRAN molecular absorption database as mentioned in this paper contains line parameters for 31 species and their isotopomers that are significant for terrestrial atmospheric studies, including chlorofluorocarbons and other molecular species that are not amenable to line-by-line representation.
Abstract: We describe in this paper the modifications, improvements, and enhancements to the HITRAN molecular absorption database that have occurred in the two editions of 1991 and 1992 The current database includes line parameters for 31 species and their isotopomers that are significant for terrestrial atmospheric studies This line-by-line portion of HITRAN presently contains about 709,000 transitions between 0 and 23,000/cm and contains three molecules not present in earlier versions: COF2, SF6, and H2S The HITRAN compilation has substantially more information on chlorofluorocarbons and other molecular species that exhibit dense spectra which are not amenable to line-by-line representation The user access of the database has been advanced, and new media forms are now available for use on personal computers

1,442 citations

Journal ArticleDOI
TL;DR: The mathematical derivations for wavelength-modulation spectroscopy and one- and two-tone frequency-modulated spectroscopies are presented and a common terminology is used to permit a comprehensive comparison of predicted detection sensitivities.
Abstract: A variety of frequency-modulation methods for high-sensitivity absorption detection of gas-phase species has evolved in recent years. The distinctions among these methods are mostly semantic. The mathematical derivations for wavelength-modulation spectroscopy and one- and two-tone frequency-modulation spectroscopies are presented; a common terminology is used to permit a comprehensive comparison of predicted detection sensitivities. Applying this formalism, I compare the optimum detection sensitivities of these different methods for a typical laser system, using the same parameters. As long as residual amplitude modulation is minimized by proper adjustment of the detection phase angle, high-frequency wavelength modulation and one- and two-tone frequency-modulation methods all achieve approximately the same sensitivities. The choice among techniques is most strongly driven by the individual laser tuning characteristics, the absorption linewidth, and the detection bandwidth. It is shown that excess laser noise cannot always be excluded from consideration, even at megahertz detection frequencies. Also, detection at harmonics of the modulation or beat frequency may present certain advantages in minimizing residual amplitude-modulation noise.

594 citations

Book
01 Jan 1966
TL;DR: In this paper, the authors present a compilation of carbon monoxide band positions, molecular constants, energy levels, potential energy curves, and other molecular properties derived from the spectrum of the spectrum.
Abstract: Compilation of carbon monoxide band positions, molecular constants, energy levels, potential energy curves, and other molecular properties derived from the spectrum.

175 citations

Journal ArticleDOI
TL;DR: Species concentrations above a laminar, premixed, methane-air flame were determined from measured absorption in a fast-flow multipass absorption cell containing probe-sampled combustion gases; good agreement was found with calculated chemical equilibrium values.
Abstract: A diode laser sensor has been applied to monitor CO, CO(2), and CH(4) in combustion gases with absorption spectroscopy and fast extraction-sampling techniques. Survey spectra of the CO 3nu band (R branch) and the 2nu(1) + 2nu(2)(0) + nu(3) CO(2) band (R branch) near 6350 cm(-1) and H(2)O lines from the nu(1) + 2nu(2) and 2nu(2) + nu(3) bands in the spectral region from 6345 to 6660 cm(-1) were recorded and compared with calculated spectra (from the HITRAN 96 database) to select optimum transitions for species detection. Species concentrations above a laminar, premixed, methane-air flame were determined from measured absorption in a fast-flow multipass absorption cell containing probe-sampled combustion gases; good agreement was found with calculated chemical equilibrium values.

146 citations

Related Papers (5)