scispace - formally typeset
Search or ask a question
Journal Article•DOI•

Simultaneous measurement of out-of-plane displacement and slope using a multiaperture DSPI system and fast Fourier transform.

10 Aug 2007-Applied Optics (Optical Society of America)-Vol. 46, Iss: 23, pp 5680-5686
TL;DR: The simultaneous quantitative measurement of out-of-plane displacement and slope using the fast Fourier transform method with a single three-aperture digital speckle pattern interferometry (DSPI) arrangement is demonstrated.
Abstract: The simultaneous quantitative measurement of out-of-plane displacement and slope using the fast Fourier transform method with a single three-aperture digital speckle pattern interferometry (DSPI) arrangement is demonstrated. The method coherently combines two sheared object waves with a smooth reference wave at the CCD placed at the image plane of an imaging lens with a three-aperture mask placed in front of it. The apertures also introduce multiple spatial carrier fringes within the speckle. A fast Fourier transform of the image generates seven distinct diffraction halos in the spectrum. By selecting the appropriate halos, one can directly obtain two independent out-of-plane displacement phase maps and a slope phase map from the two speckle images, one before and the second after loading the object. It is also demonstrated that by subtracting the out-of-plane displacement phase maps one can generate the same slope phase map. Experimental results are presented for a circular diaphragm clamped along the edges and loaded at the center.
Citations
More filters
Journal Article•
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal Article•DOI•
TL;DR: A review of the recent developments in ESPI systems for 3D displacement and strain measurement can be found in this article, where the basic theory, a brief derivation and different optical layouts are presented.
Abstract: Three dimensional(3D) displacements, which can be translated further into 3D strain, are key parameters for design, manufacturing and quality control. Using different optical setups, phase-shift methods, and algorithms, several different 3D electronic speckle pattern interferometry(ESPI) systems for displacement and strain measurements have been achieved and commercialized. This paper provides a review of the recent developments in ESPI systems for 3D displacement and strain measurement. After an overview of the fundamentals of ESPI theory, temporal phase-shift, and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI system, which is suited well for static measurement, and by the spatial phase-shift ESPI system, which is particularly useful for dynamic measurement, are discussed. For each method, the basic theory, a brief derivation and different optical layouts are presented. The state of art application, potential and limitation of the ESPI systems are shown and demonstrated.

100 citations

Journal Article•DOI•
TL;DR: A simple Michelson interferometer based spatial phase shift shearographic system that can generate a phase map of shearography by using only a single image is presented.
Abstract: This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

75 citations

Journal Article•DOI•
TL;DR: Digital shearography is one of the most sensitive and accurate methods for non-destructive testing of composite structures as discussed by the authors, which can directly measure strain with high sensitivity when combined with different optical setups, phase shift techniques, and algorithms.
Abstract: Composite materials have seen widespread use in the aerospace industry and are becoming increasingly popular in the automotive industry due to their high strength and low weight characteristics. The increasing usage of composite materials has resulted in the need for more effective techniques for nondestructive testing (NDT) of composite structures. Of these techniques, digital shearography is one the most sensitive and accurate methods for NDT. Digital shearography can directly measure strain with high sensitivity when combined with different optical setups, phase-shift techniques, and algorithms. Its simple setup and less sensitivity to environmental disturbances make it particularly well suited for practical NDT applications. This paper provides a review of the phase measurement technique and recent developments in digital shearographic NDT. The introduction of new techniques has expanded the range of digital shearography applications and made it possible to measure larger fields and detect more directional or deeper defects. At the same time, shearography for different materials is also under research, including specular surface materials, metallic materials, etc. Through the discussion of recent developments, the future development trend of digital shearography is analyzed, and the potentials and limitations are demonstrated.

56 citations

Journal Article•DOI•
TL;DR: In this paper, a modified Michelson Interferometer is used to measure out-of-plane deformation and its first derivative simultaneously, which can then be determined from a single speckle interferogram by properly selecting filters for spectrum image.

52 citations

References
More filters
Journal Article•
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal Article•DOI•
TL;DR: In this paper, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,650 citations

Journal Article•DOI•
TL;DR: In this article, a robust method for 2D phase principal values (in a least-squares sense) by using fast cosine transforms was developed, which can be used to isolate inconsistent regions (i.e., phase shear).
Abstract: Two-dimensional (2D) phase unwrapping continues to find applications in a wide variety of scientific and engineering areas including optical and microwave interferometry, adaptive optics, compensated imaging, and synthetic-aperture-radar phase correction, and image processing. We have developed a robust method (not based on any path-following scheme) for unwrapping 2D phase principal values (in a least-squares sense) by using fast cosine transforms. If the 2D phase values are associated with a 2D weighting, the fast transforms can still be used in iterative methods for solving the weighted unwrapping problem. Weighted unwrapping can be used to isolate inconsistent regions (i.e., phase shear) in an elegant fashion.

1,031 citations

Journal Article•DOI•
Katherine Creath1•
TL;DR: One application of phase-shifting techniques to speckle interferometry is finding the phase of deformations, where up to ten waves of wavefront deformation can easily be measured.
Abstract: Speckle patterns have high frequency phase data, which make it difficult to find the absolute phase of a single speckle pattern; however, the phase of the difference between two correlated speckle patterns can be determined. This is done by applying phase-shifting techniques to speckle interferometry, which will quantitatively determine the phase of double-exposure speckle measurements. The technique uses computer control to take data and calculate phase without an intermediate recording step. The randomness of the speckle causes noisy data points which are removed by data processing routines. One application of this technique is finding the phase of deformations, where up to ten waves of wavefront deformation can easily be measured. Results of deformations caused by tilt of a metal plate and a disbond in a honeycomb structure brazed to an aluminum plate are shown.

740 citations

Journal Article•DOI•
TL;DR: In this article, optical configurations for DSPI and DS with a double aperture mask in front of the imaging lens for spatial phase shifting are proposed for the measurement of out-of-plane displacement and its first order derivative (slope) respectively.
Abstract: Digital speckle pattern interferometry (DSPI) and digital shearography (DS) are well known optical tools for qualitative as well as quantitative measurements of displacement components and its derivatives of engineering structures subjected either static or dynamic load. Spatial phase shifting (SPS) technique is useful for extracting quantitative displacement data from the system with only two frames. Optical configurations for DSPI and DS with a double aperture mask in front of the imaging lens for spatial phase shifting are proposed in this paper for the measurement of out-of-plane displacement and its first order derivative (slope) respectively. An error compensating four-phase step algorithm is used for quantitative fringe analysis.

99 citations