scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments

TL;DR: This work measures the expression of 92 genes affected by Wnt signaling in 1,440 single cells from 15 individuals to associate single-nucleotide polymorphisms with gene-expression phenotypes, while accounting for stochastic and cell-cycle differences between cells.
Abstract: Gene expression in multiple individual cells from a tissue or culture sample varies according to cell-cycle, genetic, epigenetic and stochastic differences between the cells. However, single-cell differences have been largely neglected in the analysis of the functional consequences of genetic variation. Here we measure the expression of 92 genes affected by Wnt signaling in 1,440 single cells from 15 individuals to associate single-nucleotide polymorphisms (SNPs) with gene-expression phenotypes, while accounting for stochastic and cell-cycle differences between cells. We provide evidence that many heritable variations in gene function--such as burst size, burst frequency, cell cycle-specific expression and expression correlation/noise between cells--are masked when expression is averaged over many cells. Our results demonstrate how single-cell analyses provide insights into the mechanistic and network effects of genetic variability, with improved statistical power to model these effects on gene expression.
Citations
More filters
Journal ArticleDOI
TL;DR: A droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample is described and sequence variation in the transcriptome data is used to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.
Abstract: Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system’s technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system’s ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. Single-cell gene expression analysis is challenging. This work describes a new droplet-based single cell RNA-seq platform capable of processing tens of thousands of cells across 8 independent samples in minutes, and demonstrates cellular subtypes and host–donor chimerism in transplant patients.

4,219 citations


Cites background or methods from "Single-cell gene expression analysi..."

  • ...(2) Bulk RT-ddPCR (Bio-Rad One-Step RT-ddPCR Advanced Kit for Probes 1864021) was performed on the extracted RNA to determine the copy number per cell of eight selected genes....

    [...]

  • ...Number of reads that provide meaningful information is calculated as the product of four metrics: (1) valid barcodes; (2) valid UMI; (3) associated with a cell barcode; and (4) confidently mapped to exons....

    [...]

  • ...Indexed sequencing libraries were constructed using the reagents in the GemCode Single-Cell 30 Library Kit, following these steps: (1) end repair and A-tailing; (2) adapter ligation; (3) postligation cleanup with SPRIselect; (4) sample index PCR and cleanup....

    [...]

  • ...Current clinical chimerism tests have a number of limitations28, namely (1) the flow-sorted cell populations are limited by cell surface markers, (2) only populations with sufficient cell counts can be used for PCR assays and (3) they are not intended for the detection of minimal residual disease....

    [...]

  • ...Fifty PCs were used because: (1) using all PCs would take a very long time with tSNE analysis; (2) they explained B25% of total variance....

    [...]

Journal ArticleDOI
TL;DR: A probabilistic model of expression-magnitude distortions typical of single-cell RNA-sequencing measurements is described, which enables detection of differential expression signatures and identification of subpopulations of cells in a way that is more tolerant of noise.
Abstract: A method to model expression variability in single-cell RNA-seq measurements and thus to improve subsequent data analysis.

1,200 citations

Journal ArticleDOI
18 Aug 2017-Science
TL;DR: The authors profiled almost 50,000 single cells from an individual Caenorhabditis elegans larval stage and were able to identify and recover information from different, even rare, cell types and develop combinatorial indexing strategies to profile the transcriptomes of single cells or nuclei.
Abstract: To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold “shotgun” cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type–specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.

1,028 citations

Journal ArticleDOI
TL;DR: A computational tool, demuxlet, that harnesses natural genetic variation to determine the sample identity of each droplet containing a single cell (singlet) and detect droplets containing two cells (doublets), which enable multiplexed dscRNA-seq experiments in which cells from unrelated individuals are pooled and captured at higher throughput than in standard workflows.
Abstract: Droplet single-cell RNA-sequencing (dscRNA-seq) has enabled rapid, massively parallel profiling of transcriptomes. However, assessing differential expression across multiple individuals has been hampered by inefficient sample processing and technical batch effects. Here we describe a computational tool, demuxlet, that harnesses natural genetic variation to determine the sample identity of each droplet containing a single cell (singlet) and detect droplets containing two cells (doublets). These capabilities enable multiplexed dscRNA-seq experiments in which cells from unrelated individuals are pooled and captured at higher throughput than in standard workflows. Using simulated data, we show that 50 single-nucleotide polymorphisms (SNPs) per cell are sufficient to assign 97% of singlets and identify 92% of doublets in pools of up to 64 individuals. Given genotyping data for each of eight pooled samples, demuxlet correctly recovers the sample identity of >99% of singlets and identifies doublets at rates consistent with previous estimates. We apply demuxlet to assess cell-type-specific changes in gene expression in 8 pooled lupus patient samples treated with interferon (IFN)-β and perform eQTL analysis on 23 pooled samples.

682 citations

Journal ArticleDOI
TL;DR: An overview of the biological questions single-cell RNA-seq has been used to address, the major findings obtained from such studies, and current challenges and expected future developments in this booming field are provided.
Abstract: Phenotypically identical cells can dramatically vary with respect to behavior during their lifespan and this variation is reflected in their molecular composition such as the transcriptomic landscape. Single-cell transcriptomics using next-generation transcript sequencing (RNA-seq) is now emerging as a powerful tool to profile cell-to-cell variability on a genomic scale. Its application has already greatly impacted our conceptual understanding of diverse biological processes with broad implications for both basic and clinical research. Different single-cell RNA-seq protocols have been introduced and are reviewed here—each one with its own strengths and current limitations. We further provide an overview of the biological questions single-cell RNA-seq has been used to address, the major findings obtained from such studies, and current challenges and expected future developments in this booming field.

659 citations


Cites background from "Single-cell gene expression analysi..."

  • ...A systematic study of 92 genes concentrated on the Wnt signaling pathway from 15 individuals using high-throughput single-cell qRT-PCR (132,133) uncovered novel facets of eQTLs by linking single nucleotide polymorphisms (SNPs) to stochastic gene expression properties such as burst frequency and amplitude....

    [...]

References
More filters
Journal ArticleDOI
01 Dec 2001-Methods
TL;DR: The 2-Delta Delta C(T) method as mentioned in this paper was proposed to analyze the relative changes in gene expression from real-time quantitative PCR experiments, and it has been shown to be useful in the analysis of realtime, quantitative PCR data.

139,407 citations

Journal ArticleDOI
TL;DR: In this article, a simple and robust estimator of regression coefficient β based on Kendall's rank correlation tau is studied, where the point estimator is the median of the set of slopes (Yj - Yi )/(tj-ti ) joining pairs of points with ti ≠ ti.
Abstract: The least squares estimator of a regression coefficient β is vulnerable to gross errors and the associated confidence interval is, in addition, sensitive to non-normality of the parent distribution. In this paper, a simple and robust (point as well as interval) estimator of β based on Kendall's [6] rank correlation tau is studied. The point estimator is the median of the set of slopes (Yj - Yi )/(tj-ti ) joining pairs of points with ti ≠ ti , and is unbiased. The confidence interval is also determined by two order statistics of this set of slopes. Various properties of these estimators are studied and compared with those of the least squares and some other nonparametric estimators.

8,409 citations

Journal ArticleDOI
TL;DR: It is shown that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point, and flicker noise, or 1/f noise, can be identified with the dynamics of the critical state.
Abstract: We show that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point. Flicker noise, or 1/f noise, can be identified with the dynamics of the critical state. This picture also yields insight into the origin of fractal objects.

6,486 citations

Journal ArticleDOI
TL;DR: An algorithm for solving large nonlinear optimization problems with simple bounds is described, based on the gradient projection method and uses a limited memory BFGS matrix to approximate the Hessian of the objective function.
Abstract: An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited memory BFGS matrix to approximate the Hessian of the objective function. It is shown how to take advantage of the form of the limited memory approximation to implement the algorithm efficiently. The results of numerical tests on a set of large problems are reported.

5,079 citations


"Single-cell gene expression analysi..." refers methods in this paper

  • ...For optimization speed and robustness, the L-BFGS-B quasi-Newton optimizer [4] was used to allow the setting of upper and lower bounds on parameters being fitted....

    [...]

Journal ArticleDOI
02 Sep 2010-Nature
TL;DR: An expanded public resource of genome variants in global populations supports deeper interrogation of genomic variation and its role in human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.
Abstract: Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called 'HapMap 3', includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of

2,863 citations

Related Papers (5)