scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Single-cell sequencing-based technologies will revolutionize whole-organism science

01 Sep 2013-Nature Reviews Genetics (Nature Research)-Vol. 14, Iss: 9, pp 618-630
TL;DR: The unabated progress in next-generation sequencing technologies is fostering a wave of new genomics, epigenomics, transcriptomics and proteomics technologies, enabling high-throughput, multi-dimensional analyses of individual cells that will produce detailed knowledge of the cell lineage trees of higher organisms, including humans.
Abstract: The unabated progress in next-generation sequencing technologies is fostering a wave of new genomics, epigenomics, transcriptomics and proteomics technologies. These sequencing-based technologies are increasingly being targeted to individual cells, which will allow many new and longstanding questions to be addressed. For example, single-cell genomics will help to uncover cell lineage relationships; single-cell transcriptomics will supplant the coarse notion of marker-based cell types; and single-cell epigenomics and proteomics will allow the functional states of individual cells to be analysed. These technologies will become integrated within a decade or so, enabling high-throughput, multi-dimensional analyses of individual cells that will produce detailed knowledge of the cell lineage trees of higher organisms, including humans. Such studies will have important implications for both basic biological research and medicine.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Monocle is described, an unsupervised algorithm that increases the temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points that revealed switch-like changes in expression of key regulatory factors, sequential waves of gene regulation, and expression of regulators that were not known to act in differentiation.
Abstract: Defining the transcriptional dynamics of a temporal process such as cell differentiation is challenging owing to the high variability in gene expression between individual cells. Time-series gene expression analyses of bulk cells have difficulty distinguishing early and late phases of a transcriptional cascade or identifying rare subpopulations of cells, and single-cell proteomic methods rely on a priori knowledge of key distinguishing markers. Here we describe Monocle, an unsupervised algorithm that increases the temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points. Applied to the differentiation of primary human myoblasts, Monocle revealed switch-like changes in expression of key regulatory factors, sequential waves of gene regulation, and expression of regulators that were not known to act in differentiation. We validated some of these predicted regulators in a loss-of function screen. Monocle can in principle be used to recover single-cell gene expression kinetics from a wide array of cellular processes, including differentiation, proliferation and oncogenic transformation.

4,119 citations

25 May 2011
TL;DR: A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell.
Abstract: Metastasis, the dissemination and growth of neoplastic cells in an organ distinct from that in which they originated, is the most common cause of death in cancer patients. This is particularly true for pancreatic cancers, where most patients are diagnosed with metastatic disease and few show a sustained response to chemotherapy or radiation therapy. Whether the dismal prognosis of patients with pancreatic cancer compared to patients with other types of cancer is a result of late diagnosis or early dissemination of disease to distant organs is not known. Here we rely on data generated by sequencing the genomes of seven pancreatic cancer metastases to evaluate the clonal relationships among primary and metastatic cancers. We find that clonal populations that give rise to distant metastases are represented within the primary carcinoma, but these clones are genetically evolved from the original parental, non-metastatic clone. Thus, genetic heterogeneity of metastases reflects that within the primary carcinoma. A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell. At least five more years are required for the acquisition of metastatic ability and patients die an average of two years thereafter. These data provide novel insights into the genetic features underlying pancreatic cancer progression and define a broad time window of opportunity for early detection to prevent deaths from metastatic disease.

2,019 citations

Journal ArticleDOI
TL;DR: The results suggest that itching during inflammatory skin diseases such as atopic dermatitis is linked to a distinct itch-generating type, and demonstrate single-cell RNA-seq as an effective strategy for dissecting sensory responsive cells into distinct neuronal types.
Abstract: The primary sensory system requires the integrated function of multiple cell types, although its full complexity remains unclear. We used comprehensive transcriptome analysis of 622 single mouse neurons to classify them in an unbiased manner, independent of any a priori knowledge of sensory subtypes. Our results reveal eleven types: three distinct low-threshold mechanoreceptive neurons, two proprioceptive, and six principal types of thermosensitive, itch sensitive, type C low-threshold mechanosensitive and nociceptive neurons with markedly different molecular and operational properties. Confirming previously anticipated major neuronal types, our results also classify and provide markers for new, functionally distinct subtypes. For example, our results suggest that itching during inflammatory skin diseases such as atopic dermatitis is linked to a distinct itch-generating type. We demonstrate single-cell RNA-seq as an effective strategy for dissecting sensory responsive cells into distinct neuronal types. The resulting catalog illustrates the diversity of sensory types and the cellular complexity underlying somatic sensation.

1,609 citations

Journal ArticleDOI
24 Apr 2015-Science
TL;DR: This report reports multiplexed error-robust FISH (MERFISH), a single-molecule imaging method that allows thousands of RNA species to be imaged in single cells by using combinatorial FISH labeling with encoding schemes capable of detecting and/or correcting errors.
Abstract: INTRODUCTION: The copy number and in- tracellular localization of RNA are important regulators of gene expression. Measurement of these properties at the transcriptome scale in single cells will give answers to many ques- tions related to gene expression and regulation. Single-molecule RNA imaging approaches, such as single-molecule fluorescence in situ hybrid- ization(smFISH), are powerful toolsforcount- ing and mappingRNA; however, the number of RNA species that can be simultaneously im- aged in individual cells has been limited. This makes it challenging to perform transcriptomic analysis of single cells in a spatially resolved manner. Here, we report multiplexed error- robust FISH (MERFISH), a single-molecule im- aging method that allows thousands of RNA species to be imaged in single cells by using combinatorial FISH labeling with encoding schemes capable of detecting and/or correct- ing errors. RATIONALE: We labeled each cellular RNA with a set of encoding probes, which contain targeting sequences that bind the RNA and readout sequences that bind fluorescently la- beled readout probes. Each RNA species is encodedwithaparticular combinationofread- out sequences. We used successive rounds of hybridization and imaging, each with a differ- ent readout probe, to identify the readout se- quences bound to each RNA and to decode the RNA. In principle, combinatorial labeling al- lows the number of detectable RNA species to

1,576 citations

Journal ArticleDOI
Aviv Regev1, Aviv Regev2, Aviv Regev3, Sarah A. Teichmann4, Sarah A. Teichmann5, Sarah A. Teichmann6, Eric S. Lander1, Eric S. Lander7, Eric S. Lander2, Ido Amit8, Christophe Benoist7, Ewan Birney4, Bernd Bodenmiller4, Bernd Bodenmiller9, Peter J. Campbell6, Peter J. Campbell5, Piero Carninci6, Menna R. Clatworthy10, Hans Clevers11, Bart Deplancke12, Ian Dunham4, James Eberwine13, Roland Eils14, Roland Eils15, Wolfgang Enard16, Andrew Farmer, Lars Fugger17, Berthold Göttgens6, Nir Hacohen7, Nir Hacohen2, Muzlifah Haniffa18, Martin Hemberg5, Seung K. Kim19, Paul Klenerman17, Paul Klenerman20, Arnold R. Kriegstein21, Ed S. Lein22, Sten Linnarsson23, Emma Lundberg24, Emma Lundberg19, Joakim Lundeberg24, Partha P. Majumder, John C. Marioni4, John C. Marioni6, John C. Marioni5, Miriam Merad25, Musa M. Mhlanga26, Martijn C. Nawijn27, Mihai G. Netea28, Garry P. Nolan19, Dana Pe'er29, Anthony Phillipakis2, Chris P. Ponting30, Stephen R. Quake19, Wolf Reik6, Wolf Reik5, Wolf Reik31, Orit Rozenblatt-Rosen2, Joshua R. Sanes7, Rahul Satija32, Ton N. Schumacher33, Alex K. Shalek34, Alex K. Shalek2, Alex K. Shalek1, Ehud Shapiro8, Padmanee Sharma35, Jay W. Shin, Oliver Stegle4, Michael R. Stratton5, Michael J. T. Stubbington5, Fabian J. Theis36, Matthias Uhlen37, Matthias Uhlen24, Alexander van Oudenaarden11, Allon Wagner38, Fiona M. Watt39, Jonathan S. Weissman, Barbara J. Wold40, Ramnik J. Xavier, Nir Yosef34, Nir Yosef38, Human Cell Atlas Meeting Participants 
05 Dec 2017-eLife
TL;DR: An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease.
Abstract: The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

1,391 citations


Cites background or methods from "Single-cell sequencing-based techno..."

  • ..., 2014); and DNA mutations to allow precise reconstruction of cell lineages (Behjati et al., 2014; Biezuner et al., 2016; Shapiro et al., 2013; Taylor et al., 2003; Teixeira et al., 2013)....

    [...]

  • ..., 2007; Richmond and Su, 2008), or can be inferred from in vivo samples by measuring the DNA differences between individual sampled cells, arising from random mutations during cell division, and using the genetic distances to construct cellular phylogenies, or lineages (Behjati et al., 2014; Shapiro et al., 2013)....

    [...]

  • ...New computational methods will be required both to discover types and to better classify cells and, ultimately, to refine the concepts themselves (Grün and van Oudenaarden, 2015; Shapiro et al., 2013; Stegle et al., 2015; Tanay and Regev, 2017; Wagner et al., 2016)....

    [...]

  • ...…and Su, 2008), or can be inferred from in vivo samples by measuring the DNA differences between individual sampled cells, arising from random mutations during cell division, and using the genetic distances to construct cellular phylogenies, or lineages (Behjati et al., 2014; Shapiro et al., 2013)....

    [...]

  • ...New computational methods will be required both to discover types and to better classify cells—and ultimately to refine the concepts themselves (Grun and van Oudenaarden, 2015; Shapiro et al., 2013; Stegle et al., 2015; Tanay and Regev, 2017; Wagner et al., 2016)....

    [...]

References
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors.
Abstract: We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41–52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 × 10 5 distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices. The mRNA population specifies a cell’s identity and helps to govern its present and future activities. This has made transcriptome analysis a general phenotyping method, with expression microarrays of many kinds in routine use. Here we explore the possibility that transcriptome analysis, transcript discovery and transcript refinement can be done effectively in large and complex mammalian genomes by ultra-high-throughput sequencing. Expression microarrays are currently the most widely used methodology for transcriptome analysis, although some limitations persist. These include hybridization and cross-hybridization artifacts 1–3 , dye-based detection issues and design constraints that preclude or seriously limit the detection of RNA splice patterns and previously unmapped genes. These issues have made it difficult for standard array designs to provide full sequence comprehensiveness (coverage of all possible genes, including unknown ones, in large genomes) or transcriptome comprehensiveness (reliable detection of all RNAs of all prevalence classes, including the least abundant ones that are physiologically relevant). Other

12,293 citations

Journal ArticleDOI
01 Nov 2012-Nature
TL;DR: It is shown that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites.
Abstract: By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation, which is further increased by the action of purifying selection. We show that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and low-frequency variants in individuals from diverse, including admixed, populations.

7,710 citations

Journal ArticleDOI
09 Oct 2009-Science
TL;DR: Hi-C is described, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing and demonstrates the power of Hi-C to map the dynamic conformations of entire genomes.
Abstract: We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

7,180 citations

Journal ArticleDOI
TL;DR: Intratumor heterogeneity can lead to underestimation of the tumor genomics landscape portrayed from single tumor-biopsy samples and may present major challenges to personalized-medicine and biomarker development.
Abstract: Background Intratumor heterogeneity may foster tumor evolution and adaptation and hinder personalized-medicine strategies that depend on results from single tumor-biopsy samples. Methods To examine intratumor heterogeneity, we performed exome sequencing, chromosome aberration analysis, and ploidy profiling on multiple spatially separated samples obtained from primary renal carcinomas and associated metastatic sites. We characterized the consequences of intratumor heterogeneity using immunohistochemical analysis, mutation functional analysis, and profiling of messenger RNA expression. Results Phylogenetic reconstruction revealed branched evolutionary tumor growth, with 63 to 69% of all somatic mutations not detectable across every tumor region. Intratumor heterogeneity was observed for a mutation within an autoinhibitory domain of the mammalian target of rapamycin (mTOR) kinase, correlating with S6 and 4EBP phosphorylation in vivo and constitutive activation of mTOR kinase activity in vitro. Mutational intratumor heterogeneity was seen for multiple tumor-suppressor genes converging on loss of function; SETD2, PTEN, and KDM5C underwent multiple distinct and spatially separated inactivating mutations within a single tumor, suggesting convergent phenotypic evolution. Gene-expression signatures of good and poor prognosis were detected in different regions of the same tumor. Allelic composition and ploidy profiling analysis revealed extensive intratumor heterogeneity, with 26 of 30 tumor samples from four tumors harboring divergent allelic-imbalance profiles and with ploidy heterogeneity in two of four tumors. Conclusions Intratumor heterogeneity can lead to underestimation of the tumor genomics landscape portrayed from single tumor-biopsy samples and may present major challenges to personalized-medicine and biomarker development. Intratumor heterogeneity, associated with heterogeneous protein function, may foster tumor adaptation and therapeutic failure through Darwinian selection. (Funded by the Medical Research Council and others.)

6,672 citations

Related Papers (5)