scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Single Channel Target Speaker Extraction and Recognition with Speaker Beam

TL;DR: This paper addresses the problem of single channel speech recognition of a target speaker in a mixture of speech signals by exploiting auxiliary speaker information provided by an adaptation utterance from the target speaker to extract and recognize only that speaker.
Abstract: This paper addresses the problem of single channel speech recognition of a target speaker in a mixture of speech signals. We propose to exploit auxiliary speaker information provided by an adaptation utterance from the target speaker to extract and recognize only that speaker. Using such auxiliary information, we can build a speaker extraction neural network (NN) that is independent of the number of sources in the mixture, and that can track speakers across different utterances, which are two challenging issues occurring with conventional approaches for speech recognition of mixtures. We call such an informed speaker extraction scheme “SpeakerBeam”. SpeakerBeam exploits a recently developed context adaptive deep NN (CADNN) that allows tracking speech from a target speaker using a speaker adaptation layer, whose parameters are adjusted depending on auxiliary features representing the target speaker characteristics. SpeakerBeam was previously investigated for speaker extraction using a microphone array. In this paper, we demonstrate that it is also efficient for single channel speaker extraction. The speaker adaptation layer can be employed either to build a speaker adaptive acoustic model that recognizes only the target speaker or a mask-based speaker extraction network that extracts the target speech from the speech mixture signal prior to recognition. We also show that the latter speaker extraction network can be optimized jointly with an acoustic model to further improve ASR performance.
Citations
More filters
Posted Content
TL;DR: In this paper, a speaker recognition network that produces speaker-discriminative embeddings and a spectrogram masking network that takes both noisy spectrogram and speaker embedding as input, and produces a mask.
Abstract: In this paper, we present a novel system that separates the voice of a target speaker from multi-speaker signals, by making use of a reference signal from the target speaker. We achieve this by training two separate neural networks: (1) A speaker recognition network that produces speaker-discriminative embeddings; (2) A spectrogram masking network that takes both noisy spectrogram and speaker embedding as input, and produces a mask. Our system significantly reduces the speech recognition WER on multi-speaker signals, with minimal WER degradation on single-speaker signals.

197 citations

Journal ArticleDOI
TL;DR: This paper introduces SpeakerBeam, a method for extracting a target speaker from the mixture based on an adaptation utterance spoken by the target speaker and shows the benefit of including speaker information in the processing and the effectiveness of the proposed method.
Abstract: The processing of speech corrupted by interfering overlapping speakers is one of the challenging problems with regards to today's automatic speech recognition systems. Recently, approaches based on deep learning have made great progress toward solving this problem. Most of these approaches tackle the problem as speech separation, i.e., they blindly recover all the speakers from the mixture. In some scenarios, such as smart personal devices, we may however be interested in recovering one target speaker from a mixture. In this paper, we introduce SpeakerBeam, a method for extracting a target speaker from the mixture based on an adaptation utterance spoken by the target speaker. Formulating the problem as speaker extraction avoids certain issues such as label permutation and the need to determine the number of speakers in the mixture. With SpeakerBeam, we jointly learn to extract a representation from the adaptation utterance characterizing the target speaker and to use this representation to extract the speaker. We explore several ways to do this, mostly inspired by speaker adaptation in acoustic models for automatic speech recognition. We evaluate the performance on the widely used WSJ0-2mix and WSJ0-3mix datasets, and these datasets modified with more noise or more realistic overlapping patterns. We further analyze the learned behavior by exploring the speaker representations and assessing the effect of the length of the adaptation data. The results show the benefit of including speaker information in the processing and the effectiveness of the proposed method.

158 citations


Cites background or methods from "Single Channel Target Speaker Extra..."

  • ...We gradually built and refined the SpeakerBeam approach over several studies [28]–[31]....

    [...]

  • ...While these studies [28]–[30] focused on a multichannel case, in [31], we investigated the ASR performance in a single-channel setting....

    [...]

Proceedings ArticleDOI
25 Oct 2020
TL;DR: A novel Target-Speaker Voice Activity Detection (TS-VAD) approach, which directly predicts an activity of each speaker on each time frame, outperforming the baseline x-vector-based system by more than 30% Diarization Error Rate (DER) abs.
Abstract: Speaker diarization for real-life scenarios is an extremely challenging problem. Widely used clustering-based diarization approaches perform rather poorly in such conditions, mainly due to the limited ability to handle overlapping speech. We propose a novel Target-Speaker Voice Activity Detection (TS-VAD) approach, which directly predicts an activity of each speaker on each time frame. TS-VAD model takes conventional speech features (e.g., MFCC) along with i-vectors for each speaker as inputs. A set of binary classification output layers produces activities of each speaker. I-vectors can be estimated iteratively, starting with a strong clustering-based diarization. We also extend the TS-VAD approach to the multi-microphone case using a simple attention mechanism on top of hidden representations extracted from the single-channel TS-VAD model. Moreover, post-processing strategies for the predicted speaker activity probabilities are investigated. Experiments on the CHiME-6 unsegmented data show that TS-VAD achieves state-of-the-art results outperforming the baseline x-vector-based system by more than 30% Diarization Error Rate (DER) abs.

141 citations


Cites methods from "Single Channel Target Speaker Extra..."

  • ...These approaches include TSASR [21] for target speech recognition, Speaker Beam [22, 23] and Voice Filter [24] for target speech extraction, and Personal VAD [26] for target speech detection....

    [...]

  • ...This direction is represented by such approaches as Target-Speaker ASR [21], Speaker Beam [22, 23] and Voice Filter [24] aimed at the target-speaker speech extraction, etc....

    [...]

Proceedings ArticleDOI
Zhuo Chen1, Xiong Xiao1, Takuya Yoshioka1, Hakan Erdogan1, Jinyu Li1, Yifan Gong1 
18 Dec 2018
TL;DR: This work proposes a simple yet effective method for multi-channel far-field overlapped speech recognition that achieves more than 24% relative word error rate (WER) reduction than fixed beamforming with oracle selection.
Abstract: Although advances in close-talk speech recognition have resulted in relatively low error rates, the recognition performance in far-field environments is still limited due to low signal-to-noise ratio, reverberation, and overlapped speech from simultaneous speakers which is especially more difficult. To solve these problems, beamforming and speech separation networks were previously proposed. However, they tend to suffer from leakage of interfering speech or limited generalizability. In this work, we propose a simple yet effective method for multi-channel far-field overlapped speech recognition. In the proposed system, three different features are formed for each target speaker, namely, spectral, spatial, and angle features. Then a neural network is trained using all features with a target of the clean speech of the required speaker. An iterative update procedure is proposed in which the mask-based beamforming and mask estimation are performed alternatively. The proposed system were evaluated with real recorded meetings with different levels of overlapping ratios. The results show that the proposed system achieves more than 24% relative word error rate (WER) reduction than fixed beamforming with oracle selection. Moreover, as overlap ratio rises from 20% to 70+%, only 3.8% WER increase is observed for the proposed system.

129 citations


Cites background or methods from "Single Channel Target Speaker Extra..."

  • ...To handle this problem two families of algorithm were proposed in recent years, namely the blind speech separation [5, 10, 3, 4] and informed speech extraction [13, 14, 15]....

    [...]

  • ...In [13, 14, 18], speaker identity features extracted from an additional enrollment utterance has been shown useful for separation....

    [...]

Proceedings ArticleDOI
04 May 2020
TL;DR: This paper investigates a self-adaptation method for speech enhancement using auxiliary speaker-aware features; it extracts a speaker representation used for adaptation directly from the test utterance and uses multi-task learning of speech enhancement and speaker identification, and uses the output of the final hidden layer of speaker identification branch as an auxiliary feature.
Abstract: This paper investigates a self-adaptation method for speech enhancement using auxiliary speaker-aware features; we extract a speaker representation used for adaptation directly from the test utterance. Conventional studies of deep neural network (DNN)-based speech enhancement mainly focus on building a speaker independent model. Meanwhile, in speech applications including speech recognition and synthesis, it is known that model adaptation to the target speaker improves the accuracy. Our research question is whether a DNN for speech enhancement can be adopted to unknown speakers without any auxiliary guidance signal in test-phase. To achieve this, we adopt multi-task learning of speech enhancement and speaker identification, and use the output of the final hidden layer of speaker identification branch as an auxiliary feature. In addition, we use multi-head self-attention for capturing long-term dependencies in the speech and noise. Experimental results on a public dataset show that our strategy achieves the state-of-the-art performance and also outperform conventional methods in terms of subjective quality.

100 citations


Cites methods from "Single Channel Target Speaker Extra..."

  • ...In the SpeakerBeam method [20, 21], the guidance signal in the T-F-domain A ∈ CF×Ka is converted to the sequence-summarized feature λ ∈ R using an auxiliary neural network G : CF×Ka → RP×Ka as...

    [...]

References
More filters
Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations


"Single Channel Target Speaker Extra..." refers methods in this paper

  • ...The AM and all other models were trained using the ADAM optimizer [28]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive overview of deep learning-based supervised speech separation can be found in this paper, where three main components of supervised separation are discussed: learning machines, training targets, and acoustic features.
Abstract: Speech separation is the task of separating target speech from background interference. Traditionally, speech separation is studied as a signal processing problem. A more recent approach formulates speech separation as a supervised learning problem, where the discriminative patterns of speech, speakers, and background noise are learned from training data. Over the past decade, many supervised separation algorithms have been put forward. In particular, the recent introduction of deep learning to supervised speech separation has dramatically accelerated progress and boosted separation performance. This paper provides a comprehensive overview of the research on deep learning based supervised speech separation in the last several years. We first introduce the background of speech separation and the formulation of supervised separation. Then, we discuss three main components of supervised separation: learning machines, training targets, and acoustic features. Much of the overview is on separation algorithms where we review monaural methods, including speech enhancement (speech-nonspeech separation), speaker separation (multitalker separation), and speech dereverberation, as well as multimicrophone techniques. The important issue of generalization, unique to supervised learning, is discussed. This overview provides a historical perspective on how advances are made. In addition, we discuss a number of conceptual issues, including what constitutes the target source.

1,009 citations

Proceedings ArticleDOI
05 Mar 2017
TL;DR: In this paper, a permutation invariant training (PIT) was proposed for speaker independent multi-talker speech separation, commonly known as the cocktail-party problem, which minimizes the separation error directly.
Abstract: We propose a novel deep learning training criterion, named permutation invariant training (PIT), for speaker independent multi-talker speech separation, commonly known as the cocktail-party problem. Different from the multi-class regression technique and the deep clustering (DPCL) technique, our novel approach minimizes the separation error directly. This strategy effectively solves the long-lasting label permutation problem, that has prevented progress on deep learning based techniques for speech separation. We evaluated PIT on the WSJ0 and Danish mixed-speech separation tasks and found that it compares favorably to non-negative matrix factorization (NMF), computational auditory scene analysis (CASA), and DPCL and generalizes well over unseen speakers and languages. Since PIT is simple to implement and can be easily integrated and combined with other advanced techniques, we believe improvements built upon PIT can eventually solve the cocktail-party problem.

788 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: This work proposes to adapt deep neural network acoustic models to a target speaker by supplying speaker identity vectors (i-vectors) as input features to the network in parallel with the regular acoustic features for ASR, comparable in performance to DNNs trained on speaker-adapted features with the advantage that only one decoding pass is needed.
Abstract: We propose to adapt deep neural network (DNN) acoustic models to a target speaker by supplying speaker identity vectors (i-vectors) as input features to the network in parallel with the regular acoustic features for ASR. For both training and test, the i-vector for a given speaker is concatenated to every frame belonging to that speaker and changes across different speakers. Experimental results on a Switchboard 300 hours corpus show that DNNs trained on speaker independent features and i-vectors achieve a 10% relative improvement in word error rate (WER) over networks trained on speaker independent features only. These networks are comparable in performance to DNNs trained on speaker-adapted features (with VTLN and FMLLR) with the advantage that only one decoding pass is needed. Furthermore, networks trained on speaker-adapted features and i-vectors achieve a 5-6% relative improvement in WER after hessian-free sequence training over networks trained on speaker-adapted features only.

714 citations


"Single Channel Target Speaker Extra..." refers background or methods in this paper

  • ...There have been many studies on adaptation of DNN-based acoustic models exploiting auxiliary features [19, 20, 23, 24]....

    [...]

  • ...Conventional approaches simply concatenate the auxiliary feature to the input of a DNN (auxiliary input DNN) [20,23,24]....

    [...]

Posted Content
TL;DR: Preliminary experiments on single-channel mixtures from multiple speakers show that a speaker-independent model trained on two-speaker mixtures can improve signal quality for mixtures of held-out speakers by an average of 6dB, and the same model does surprisingly well with three-speakers mixtures.
Abstract: We address the problem of acoustic source separation in a deep learning framework we call "deep clustering." Rather than directly estimating signals or masking functions, we train a deep network to produce spectrogram embeddings that are discriminative for partition labels given in training data. Previous deep network approaches provide great advantages in terms of learning power and speed, but previously it has been unclear how to use them to separate signals in a class-independent way. In contrast, spectral clustering approaches are flexible with respect to the classes and number of items to be segmented, but it has been unclear how to leverage the learning power and speed of deep networks. To obtain the best of both worlds, we use an objective function that to train embeddings that yield a low-rank approximation to an ideal pairwise affinity matrix, in a class-independent way. This avoids the high cost of spectral factorization and instead produces compact clusters that are amenable to simple clustering methods. The segmentations are therefore implicitly encoded in the embeddings, and can be "decoded" by clustering. Preliminary experiments show that the proposed method can separate speech: when trained on spectrogram features containing mixtures of two speakers, and tested on mixtures of a held-out set of speakers, it can infer masking functions that improve signal quality by around 6dB. We show that the model can generalize to three-speaker mixtures despite training only on two-speaker mixtures. The framework can be used without class labels, and therefore has the potential to be trained on a diverse set of sound types, and to generalize to novel sources. We hope that future work will lead to segmentation of arbitrary sounds, with extensions to microphone array methods as well as image segmentation and other domains.

604 citations


"Single Channel Target Speaker Extra..." refers background in this paper

  • ...Recently, deep clustering [9] and deep attractor networks [11] have been proposed to release these limitations....

    [...]