scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Single-crystal gallium nitride nanotubes.

10 Apr 2003-Nature (Nature Publishing Group)-Vol. 422, Iss: 6932, pp 599-602
TL;DR: An ‘epitaxial casting’ approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30–200 nm and wall thicknesses of 5–50‬nm is reported, applicable to many other semiconductor systems.
Abstract: Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.
Citations
More filters
Journal ArticleDOI
TL;DR: Plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks is focused on, and recently reported plasMon-mediated photocatallytic reactions on plAsmonic nanostructures of noble metals are discussed.
Abstract: Recent years have seen a renewed interest in the harvesting and conversion of solar energy. Among various technologies, the direct conversion of solar to chemical energy using photocatalysts has received significant attention. Although heterogeneous photocatalysts are almost exclusively semiconductors, it has been demonstrated recently that plasmonic nanostructures of noble metals (mainly silver and gold) also show significant promise. Here we review recent progress in using plasmonic metallic nanostructures in the field of photocatalysis. We focus on plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks, and recently reported plasmon-mediated photocatalytic reactions on plasmonic nanostructures of noble metals. We also discuss the areas where major advancements are needed to move the field of plasmon-mediated photocatalysis forward.

4,074 citations

Journal ArticleDOI
TL;DR: In this article, a review highlights the recent advances in the field, using work from this laboratory for illustration, and the understanding of general nanocrystal growth mechanisms serves as the foundation for the rational synthetic control of one-dimensional nanoscale building blocks, novel properties characterization and device fabrication based on nanowire building blocks.
Abstract: ▪ Abstract Semiconductor nanowires and nanotubes exhibit novel electronic and optical properties owing to their unique structural one-dimensionality and possible quantum confinement effects in two dimensions. With a broad selection of compositions and band structures, these one-dimensional semiconductor nanostructures are considered to be the critical components in a wide range of potential nanoscale device applications. To fully exploit these one-dimensional nanostructures, current research has focused on rational synthetic control of one-dimensional nanoscale building blocks, novel properties characterization and device fabrication based on nanowire building blocks, and integration of nanowire elements into complex functional architectures. Significant progress has been made in a few short years. This review highlights the recent advances in the field, using work from this laboratory for illustration. The understanding of general nanocrystal growth mechanisms serves as the foundation for the rational sy...

1,407 citations


Cites methods from "Single-crystal gallium nitride nano..."

  • ...Shortly thereafter, ZnO/GaN core-sheath heterostructures were grown by our laboratory using a MOCVD approach (64)....

    [...]

  • ...This “epitaxial casting” strategy was used to synthesize GaN nanotubes with inner diameters of 30–200 nm and wall thicknesses of 5–50 nm (64)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a device physics model for radial p-n junction nanorod solar cells was developed, in which densely packed nanorods, each having a pn junction in the radial direction, are oriented with the rod axis parallel to the incident light direction.
Abstract: A device physics model has been developed for radial p-n junction nanorod solar cells, in which densely packed nanorods, each having a p-n junction in the radial direction, are oriented with the rod axis parallel to the incident light direction. High-aspect-ratio (length/diameter) nanorods allow the use of a sufficient thickness of material to obtain good optical absorption while simultaneously providing short collection lengths for excited carriers in a direction normal to the light absorption. The short collection lengths facilitate the efficient collection of photogenerated carriers in materials with low minority-carrier diffusion lengths. The modeling indicates that the design of the radial p-n junction nanorod device should provide large improvements in efficiency relative to a conventional planar geometry p-n junction solar cell, provided that two conditions are satisfied: (1) In a planar solar cell made from the same absorber material, the diffusion length of minority carriers must be too low to allow for extraction of most of the light-generated carriers in the absorber thickness needed to obtain full light absorption. (2) The rate of carrier recombination in the depletion region must not be too large (for silicon this means that the carrier lifetimes in the depletion region must be longer than ~10 ns). If only condition (1) is satisfied, the modeling indicates that the radial cell design will offer only modest improvements in efficiency relative to a conventional planar cell design. Application to Si and GaAs nanorod solar cells is also discussed in detail.

1,397 citations

Journal ArticleDOI
10 Apr 2003-Nature
TL;DR: A new spin-exchange relaxation-free (SERF) atomic magnetometer is described, and theoretical analysis shows that fundamental sensitivity limits of this device are below 0.01 fT Hz-1/2, which would enable new applications, including the possibility of mapping non-invasively the cortical modules in the brain.
Abstract: The magnetic field is one of the most fundamental and ubiquitous physical observables, carrying information about all electromagnetic phenomena. For the past 30 years, superconducting quantum interference devices (SQUIDs) operating at 4 K have been unchallenged as ultrahigh-sensitivity magnetic field detectors, with a sensitivity reaching down to 1 fT Hz(-1/2) (1 fT = 10(-15) T). They have enabled, for example, mapping of the magnetic fields produced by the brain, and localization of the underlying electrical activity (magnetoencephalography). Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have approached similar levels of sensitivity using large measurement volumes, but have much lower sensitivity in the more compact designs required for magnetic imaging applications. Higher sensitivity and spatial resolution combined with non-cryogenic operation of atomic magnetometers would enable new applications, including the possibility of mapping non-invasively the cortical modules in the brain. Here we describe a new spin-exchange relaxation-free (SERF) atomic magnetometer, and demonstrate magnetic field sensitivity of 0.54 fT Hz(-1/2) with a measurement volume of only 0.3 cm3. Theoretical analysis shows that fundamental sensitivity limits of this device are below 0.01 fT Hz(-1/2). We also demonstrate simple multichannel operation of the magnetometer, and localization of magnetic field sources with a resolution of 2 mm.

1,238 citations

Journal ArticleDOI
TL;DR: The capability and feasibility of this technique have been demonstrated by the fabrication of titania/polymer or anatase nanotubes whose size and wall thickness could be independently varied by controlling a set of experimental parameters.
Abstract: Hollow nanofibers with walls made of inorganic/polymer composites or ceramics have been prepared by electrospinning two immiscible liquids through a coaxial, two-capillary spinneret, followed by selective removal of the cores. The capability and feasibility of this technique have been demonstrated by the fabrication of titania/polymer or anatase nanotubes whose size and wall thickness could be independently varied by controlling a set of experimental parameters. The presence of a sol−gel precursor in the sheath liquid was necessary for the formation of stable, coaxial jets and hollow fibers with robust walls. The circular cross-section, uniform size, and well-controlled orientation of these long hollow nanofibers are particularly attractive for use in fabricating fluidic devices and optical waveguides.

1,181 citations

References
More filters
Journal ArticleDOI
Sumio Iijima1
01 Nov 1991-Nature
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract: THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.

39,086 citations


Additional excerpts

  • ...jpg" NDATA ITEM> ]> Since the discovery of carbon nanotubes in 1991 (ref...

    [...]

Journal ArticleDOI
08 Jun 2001-Science
TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Abstract: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 03 nanometer The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis

8,592 citations


"Single-crystal gallium nitride nano..." refers methods in this paper

  • ...We grew arrays of ZnO nanowires on (110) sapphire wafers using a vapour deposition process developed in our laborator...

    [...]

Journal ArticleDOI
TL;DR: The mathematical theory of the method is explained in detail, followed by a thorough description of MEG instrumentation, data analysis, and practical construction of multi-SQUID devices.
Abstract: Magnetoencephalography (MEG) is a noninvasive technique for investigating neuronal activity in the living human brain. The time resolution of the method is better than 1 ms and the spatial discrimination is, under favorable circumstances, 2-3 mm for sources in the cerebral cortex. In MEG studies, the weak 10 fT-1 pT magnetic fields produced by electric currents flowing in neurons are measured with multichannel SQUID (superconducting quantum interference device) gradiometers. The sites in the cerebral cortex that are activated by a stimulus can be found from the detected magnetic-field distribution, provided that appropriate assumptions about the source render the solution of the inverse problem unique. Many interesting properties of the working human brain can be studied, including spontaneous activity and signal processing following external stimuli. For clinical purposes, determination of the locations of epileptic foci is of interest. The authors begin with a general introduction and a short discussion of the neural basis of MEG. The mathematical theory of the method is then explained in detail, followed by a thorough description of MEG instrumentation, data analysis, and practical construction of multi-SQUID devices. Finally, several MEG experiments performed in the authors' laboratory are described, covering studies of evoked responses and of spontaneous activity in both healthy and diseased brains. Many MEG studies by other groups are discussed briefly as well.

4,533 citations

Journal ArticleDOI
23 Dec 1994-Science
TL;DR: A relatively new method for preparing nanomaterials, membrane-based synthesis, is reviewed, which entails synthesis of the desired material within the pores of a nanoporous membrane.
Abstract: Materials with nanoscopic dimensions not only have potential technological applications in areas such as device technology and drug delivery but also are of fundamental interest in that the properties of a material can change in this regime of transition between the bulk and molecular scales. In this article, a relatively new method for preparing nanomaterials, membrane-based synthesis, is reviewed. This method entails synthesis of the desired material within the pores of a nanoporous membrane. Because the membranes used contain cylindrical pores of uniform diameter, monodisperse nanocylinders of the desired material, whose dimensions can be carefully controlled, are obtained. This "template" method has been used to prepare polymers, metals, semiconductors, and other materials on a nanoscopic scale.

3,887 citations

Journal ArticleDOI
07 Nov 2002-Nature
TL;DR: The synthesis of core–multishell structures, including a high-performance coaxially gated field-effect transistor, indicates the general potential of radial heterostructure growth for the development of nanowire-based devices.
Abstract: Semiconductor heterostructures with modulated composition and/or doping enable passivation of interfaces and the generation of devices with diverse functions. In this regard, the control of interfaces in nanoscale building blocks with high surface area will be increasingly important in the assembly of electronic and photonic devices. Core-shell heterostructures formed by the growth of crystalline overlayers on nanocrystals offer enhanced emission efficiency, important for various applications. Axial heterostructures have also been formed by a one-dimensional modulation of nanowire composition and doping. However, modulation of the radial composition and doping in nanowire structures has received much less attention than planar and nanocrystal systems. Here we synthesize silicon and germanium core-shell and multishell nanowire heterostructures using a chemical vapour deposition method applicable to a variety of nanoscale materials. Our investigations of the growth of boron-doped silicon shells on intrinsic silicon and silicon-silicon oxide core-shell nanowires indicate that homoepitaxy can be achieved at relatively low temperatures on clean silicon. We also demonstrate the possibility of heteroepitaxial growth of crystalline germanium-silicon and silicon-germanium core-shell structures, in which band-offsets drive hole injection into either germanium core or shell regions. Our synthesis of core-multishell structures, including a high-performance coaxially gated field-effect transistor, indicates the general potential of radial heterostructure growth for the development of nanowire-based devices.

2,022 citations