scispace - formally typeset
Open AccessJournal ArticleDOI

Single mimivirus particles intercepted and imaged with an X-ray laser

M. Marvin Seibert, +88 more
- 03 Feb 2011 - 
- Vol. 470, Iss: 7332, pp 78-81
Reads0
Chats0
TLDR
This work shows that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source.
Abstract
The start-up of the Linac Coherent Light Source (LCLS), the new femtosecond hard X-ray laser facility in Stanford, California, has brought high expectations of a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. Two papers in this issue of Nature present proof-of-concept experiments showing the LCLS in action. Chapman et al. tackle structure determination from nanocrystals of macromolecules that cannot be grown in large crystals. They obtain more than three million diffraction patterns from a stream of nanocrystals of the membrane protein photosystem I, and assemble a three-dimensional data set for this protein. Seibert et al. obtain images of a non-crystalline biological sample, mimivirus, by injecting a beam of cooled mimivirus particles into the X-ray beam. The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of imaging a non-crystalline biological sample. Images of mimivirus are obtained, the largest known virus with a total diameter of about 0.75 micrometres, by injecting a beam of cooled mimivirus particles into the X-ray beam. The measurements indicate no damage during imaging and prove the concept of this imaging technique. X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions1,2,3,4. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma1. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval2. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source5. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Phase Retrieval with Application to Optical Imaging: A contemporary overview

TL;DR: The goal is to describe the current state of the art in this area, identify challenges, and suggest future directions and areas where signal processing methods can have a large impact on optical imaging and on the world of imaging at large.
Book

X-Rays and Extreme Ultraviolet Radiation: Principles and Applications

TL;DR: In this paper, the fundamental properties of soft x-rays and extreme ultraviolet (EUV) radiation are discussed and their applications in a wide variety of fields, including EUV lithography for semiconductor chip manufacture and soft X-ray biomicroscopy.
Journal ArticleDOI

Beyond crystallography: Diffractive imaging using coherent x-ray light sources

TL;DR: The revolutionary advances that are transforming x-ray sources and imaging in the 21st century are reviewed.
Journal ArticleDOI

Imaging ultrafast molecular dynamics with laser-induced electron diffraction

TL;DR: The method has the sensitivity to measure a 0.1 Å displacement in the oxygen bond length occurring in a time interval of ∼5 fs, which establishes LIED as a promising approach for the imaging of gas-phase molecules with unprecedented spatio-temporal resolution.
References
More filters
Journal ArticleDOI

Potential for biomolecular imaging with femtosecond X-ray pulses

TL;DR: Computer simulations are used to investigate the structural information that can be recovered from the scattering of intense femtosecond X-ray pulses by single protein molecules and small assemblies and predict that ultrashort, high-intensity X-rays from free-electron lasers that are currently under development will provide a new approach to structural determinations with X- rays.
Journal ArticleDOI

Femtosecond X-ray protein nanocrystallography

Henry N. Chapman, +88 more
- 03 Feb 2011 - 
TL;DR: This work offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage, by using pulses briefer than the timescale of most damage processes.
Journal ArticleDOI

The 1.2-Megabase Genome Sequence of Mimivirus

TL;DR: The size and complexity of the Mimivirus genome challenge the established frontier between viruses and parasitic cellular organisms and this new sequence data might help shed a new light on the origin of DNA viruses and their role in the early evolution of eukaryotes.
Related Papers (5)

Femtosecond X-ray protein nanocrystallography

Henry N. Chapman, +88 more
- 03 Feb 2011 -