scispace - formally typeset
Open accessJournal ArticleDOI: 10.1016/J.MOLCEL.2020.12.020

Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins.

04 Mar 2021-Molecular Cell (Elsevier)-Vol. 81, Iss: 5, pp 1058
Abstract: Summary Homologous recombination (HR) is an essential DNA double-strand break (DSB) repair mechanism, which is frequently inactivated in cancer. During HR, RAD51 forms nucleoprotein filaments on RPA-coated, resected DNA and catalyzes strand invasion into homologous duplex DNA. How RAD51 displaces RPA and assembles into long HR-proficient filaments remains uncertain. Here, we employed single-molecule imaging to investigate the mechanism of nematode RAD-51 filament growth in the presence of BRC-2 (BRCA2) and RAD-51 paralogs, RFS-1/RIP-1. BRC-2 nucleates RAD-51 on RPA-coated DNA, whereas RFS-1/RIP-1 acts as a “chaperone” to promote 3′ to 5′ filament growth via highly dynamic engagement with 5′ filament ends. Inhibiting ATPase or mutation in the RFS-1 Walker box leads to RFS-1/RIP-1 retention on RAD-51 filaments and hinders growth. The rfs-1 Walker box mutants display sensitivity to DNA damage and accumulate RAD-51 complexes non-functional for HR in vivo. Our work reveals the mechanism of RAD-51 nucleation and filament growth in the presence of recombination mediators.

... read more

Topics: Strand invasion (61%), Replication protein A (61%), RAD51 (60%) ... read more
Citations
  More

19 results found


Open accessJournal ArticleDOI: 10.1016/J.MOLCEL.2020.12.019
Upasana Roy1, Youngho Kwon2, Lea Marie1, Lorraine S. Symington1  +3 moreInstitutions (3)
04 Mar 2021-Molecular Cell
Abstract: Homologous recombination (HR) is essential for maintenance of genome integrity. Rad51 paralogs fulfill a conserved but undefined role in HR, and their mutations are associated with increased cancer risk in humans. Here, we use single-molecule imaging to reveal that the Saccharomyces cerevisiae Rad51 paralog complex Rad55-Rad57 promotes assembly of Rad51 recombinase filament through transient interactions, providing evidence that it acts like a classical molecular chaperone. Srs2 is an ATP-dependent anti-recombinase that downregulates HR by actively dismantling Rad51 filaments. Contrary to the current model, we find that Rad55-Rad57 does not physically block the movement of Srs2. Instead, Rad55-Rad57 promotes rapid re-assembly of Rad51 filaments after their disruption by Srs2. Our findings support a model in which Rad51 is in flux between free and single-stranded DNA (ssDNA)-bound states, the rate of which is controlled dynamically though the opposing actions of Rad55-Rad57 and Srs2.

... read more

Topics: RAD51 (57%), Homologous recombination (52%), DNA repair (51%) ... read more

16 Citations


Journal ArticleDOI: 10.1016/J.MOLCEL.2021.01.037
Petr Cejka1Institutions (1)
04 Mar 2021-Molecular Cell
Abstract: In this issue of Molecular Cell, Roy et al. (2021) and Belan et al. (2021) demonstrate that the yeast and nematode RAD51 paralog complexes function as chaperones to promote the assembly of the RAD51 nucleoprotein filament on RPA-coated ssDNA.

... read more

2 Citations


Journal ArticleDOI: 10.1016/J.SEMCANCER.2021.04.012
Jake A. Kloeber1, Zhenkun Lou1Institutions (1)
Abstract: The acquisition of DNA damage is an early driving event in tumorigenesis. Premalignant lesions show activated DNA damage responses and inactivation of DNA damage checkpoints promotes malignant transformation. However, DNA damage is also a targetable vulnerability in cancer cells. This requires a detailed understanding of the cellular and molecular mechanisms governing DNA integrity. Here, we review current work on DNA damage in tumorigenesis. We discuss DNA double strand break repair, how repair pathways contribute to tumorigenesis, and how double strand breaks are linked to the tumor microenvironment. Next, we discuss the role of oncogenes in promoting DNA damage through replication stress. Finally, we discuss our current understanding on DNA damage in micronuclei and discuss therapies targeting these DNA damage pathways.

... read more

Topics: DNA damage (69%), Double Strand Break Repair (58%), Genome instability (58%) ... read more

1 Citations


Open accessJournal ArticleDOI: 10.1016/J.XPRO.2021.100588
11 Jun 2021-
Abstract: Summary Here, we describe a rapid and versatile protocol to generate gapped DNA substrates for single-molecule (SM) analysis using optical tweezers via site-specific Cas9 nicking and force-induced melting. We provide examples of single-stranded (ss) DNA gaps of different length and position. We outline protocols to visualize these substrates by replication protein A-enhanced Green Fluorescent Protein (RPA-eGFP) and SYTOX Orange staining using commercially available optical tweezers (C-TRAP). Finally, we demonstrate the utility of these substrates for SM analysis of bidirectional growth of RAD-51-ssDNA filaments. For complete details on the use and execution of this protocol, please refer to Belan et al. (2021) .

... read more

1 Citations


Open accessPosted ContentDOI: 10.1101/2021.05.27.446004
Laurent Maloisel1, Emilie Ma1, Eric Coïc1Institutions (1)
27 May 2021-bioRxiv
Abstract: Bypass of DNA lesions that block replicative polymerases during DNA replication relies on several DNA damage tolerance pathways. The error-prone translesion synthesis (TLS) pathway involves specialized DNA polymerases that incorporate nucleotides in front of base lesions. The template switching and the homologous recombination (HR) pathways are mostly error-free because the bypass is performed by using typically the sister chromatid as a template. This is promoted by the Rad51 recombinase that forms nucleoprotein filaments on single-strand DNA (ssDNA). The balance between error-prone and error-free pathways controls the level of mutagenesis. In yeast, the Rad55-Rad57 complex of Rad51 paralogs is required for Rad51 filament formation and stability, notably by counteracting the Srs2 antirecombinase. Several reports showed that Rad55-Rad57 promotes HR at stalled replication forks more than at DNA double-strand breaks (DSB), suggesting that this complex is more efficient at ssDNA gaps and thus, could control the recruitment of TLS polymerases. To address this point, we studied the interplay between Rad55-Rad57 and the TLS polymerases Polζ and Polη following UV radiation. We confirmed that Rad55-Rad57 protects Rad51 filaments from Srs2 dismantling activity but we found that it is also essential for the promotion of UV-induced HR independently of Srs2. In addition, we observed that cell UV sensitivity, but not DSB sensitivity, is synergistically increased when Rad55 and Polζ deletions are combined. Moreover, we found that mutagenesis and HR frequency were increased in rad55∆ mutants and in TLS-deficient cells, respectively. Finally, UV-induced HR was partially restored in Rad55-deficient cells with mutated Polζ or Polη. Overall, our data suggest that the HR and TLS pathways compete for the same ssDNA substrates and that the Rad55-Rad57 complex of Rad51 paralogs prevents the recruitment of TLS polymerases and counterbalances mutagenesis.

... read more

Topics: DNA replication (57%), DNA polymerase (56%), RAD51 (56%) ... read more

1 Citations


References
  More

56 results found


Journal ArticleDOI: 10.1126/SCIENCE.1088759
24 Oct 2003-Science
Abstract: Risks of breast and ovarian cancer were determined for Ashkenazi Jewish women with inherited mutations in the tumor suppressor genes BRCA1 and BRCA2. We selected 1008 index cases, regardless of family history of cancer, and carried out molecular analysis across entire families. The lifetime risk of breast cancer among female mutation carriers was 82%, similar to risks in families with many cases. Risks appear to be increasing with time: Breast cancer risk by age 50 among mutation carriers born before 1940 was 24%, but among those born after 1940 it was 67%. Lifetime risks of ovarian cancer were 54% for BRCA1 and 23% for BRCA2 mutation carriers. Physical exercise and lack of obesity in adolescence were associated with significantly delayed breast cancer onset.

... read more

Topics: BRCA mutation (73%), Hereditary breast–ovarian cancer syndrome (66%), Breast cancer (65%) ... read more

1,919 Citations


Open accessJournal ArticleDOI: 10.1038/NATURE13011
Samuel H. Sternberg1, Sy Redding2, Martin Jinek1, Eric C. Greene3  +1 moreInstitutions (4)
06 Mar 2014-Nature
Abstract: The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

... read more

Topics: Protospacer adjacent motif (67%), Cas9 (63%), Base pair (61%) ... read more

1,348 Citations


Open accessJournal ArticleDOI: 10.1016/J.MOLCEL.2012.07.029
24 Aug 2012-Molecular Cell
Abstract: DNA double-strand breaks (DSBs) are highly toxic lesions that can drive genetic instability. To preserve genome integrity, organisms have evolved several DSB repair mechanisms, of which nonhomologous end-joining (NHEJ) and homologous recombination (HR) represent the two most prominent. It has recently become apparent that multiple layers of regulation exist to ensure these repair pathways are accurate and restricted to the appropriate cellular contexts. Such regulation is crucial, as failure to properly execute DSB repair is known to accelerate tumorigenesis and is associated with several human genetic syndromes. Here, we review recent insights into the mechanisms that influence the choice between competing DSB repair pathways, how this is regulated during the cell cycle, and how imbalances in this equilibrium result in genome instability.

... read more

Topics: Double Strand Break Repair (62%), Genome instability (57%), DNA repair (57%) ... read more

1,234 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2004.08.015
17 Sep 2004-Cell
Abstract: DNA repair is an essential process for preserving genome integrity in all organisms. In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into centers (foci). Here, we analyze the cellular response to DNA double-strand breaks (DSBs) and replication stress in Saccharomyces cerevisiae. The Mre11 nuclease and the ATM-related Tel1 kinase are the first proteins detected at DSBs. Next, the Rfa1 single-strand DNA binding protein relocalizes to the break and recruits other key checkpoint proteins. Later and only in S and G2 phase, the homologous recombination machinery assembles at the site. Unlike the response to DSBs, Mre11 and recombination proteins are not recruited to hydroxyurea-stalled replication forks unless the forks collapse. The cellular response to DSBs and DNA replication stress is likely directed by the Mre11 complex detecting and processing DNA ends in conjunction with Sae2 and by RP-A recognizing single-stranded DNA and recruiting additional checkpoint and repair proteins.

... read more

Topics: DNA repair (66%), G2-M DNA damage checkpoint (66%), Replication protein A (65%) ... read more

908 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2011.03.041
13 May 2011-Cell
Abstract: Breast cancer suppressor BRCA2 is critical for maintenance of genomic integrity and resistance to agents that damage DNA or collapse replication forks, presumably through homology-directed repair of double-strand breaks (HDR). Using single-molecule DNA fiber analysis, we show here that nascent replication tracts created before fork stalling with hydroxyurea are degraded in the absence of BRCA2 but are stable in wild-type cells. BRCA2 mutational analysis reveals that a conserved C-terminal site involved in stabilizing RAD51 filaments, but not in loading RAD51 onto DNA, is essential for this fork protection but dispensable for HDR. RAD51 filament disruption in wild-type cells phenocopies BRCA2 deficiency. BRCA2 prevents chromosomal aberrations on replication stalling, which are alleviated by inhibition of MRE11, the nuclease responsible for this form of fork instability. Thus, BRCA2 prevents rather than repairs nucleolytic lesions at stalled replication forks to maintain genomic integrity and hence likely suppresses tumorigenesis through this replication-specific function.

... read more

Topics: Replication fork protection (77%), Replication fork reversal (73%), DNA replication (58%) ... read more

839 Citations