scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Single-Molecule Enzymatic Dynamics

04 Dec 1998-Science (American Association for the Advancement of Science)-Vol. 282, Iss: 5395, pp 1877-1882
TL;DR: A molecular memory phenomenon, in which an enzymatic turnover was not independent of its previous turnovers because of a slow fluctuated of protein conformation, was evidenced by spontaneous spectral fluctuation of FAD.
Abstract: Enzymatic turnovers of single cholesterol oxidase molecules were observed in real time by monitoring the emission from the enzyme's fluorescent active site, flavin adenine dinucleotide (FAD). Statistical analyses of single-molecule trajectories revealed a significant and slow fluctuation in the rate of cholesterol oxidation by FAD. The static disorder and dynamic disorder of reaction rates, which are essentially indistinguishable in ensemble-averaged experiments, were determined separately by the real-time single-molecule approach. A molecular memory phenomenon, in which an enzymatic turnover was not independent of its previous turnovers because of a slow fluctuation of protein conformation, was evidenced by spontaneous spectral fluctuation of FAD.
Citations
More filters
Journal ArticleDOI
TL;DR: These techniques are described and illustrated with examples highlighting current capabilities and limitations of single-molecule force spectroscopy.
Abstract: Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.

2,155 citations


Cites background from "Single-Molecule Enzymatic Dynamics"

  • ...Likewise, multistate or multispecies distributions can be directly measured along with static and dynamic enzymatic heterogeneit...

    [...]

Journal ArticleDOI
12 Mar 1999-Science
TL;DR: The progress in applying single-molecule detection and single-Molecule spectroscopy at room temperature by laser-induced fluorescence with the use of fluorophores that are site-specifically attached to macromolecules is reviewed.
Abstract: Recent advances in single-molecule detection and single-molecule spectroscopy at room temperature by laser-induced fluorescence offer new tools for the study of individual macromolecules under physiological conditions. These tools relay conformational states, conformational dynamics, and activity of single biological molecules to physical observables, unmasked by ensemble averaging. Distributions and time trajectories of these observables can therefore be measured during a reaction without the impossible need to synchronize all the molecules in the ensemble. The progress in applying these tools to biological studies with the use of fluorophores that are site-specifically attached to macromolecules is reviewed.

2,053 citations

Journal ArticleDOI
31 Jan 2003-Science
TL;DR: It is shown that arrays of zero-mode waveguides consisting of subwavelength holes in a metal film provide a simple and highly parallel means for studying single-molecule dynamics at micromolar concentrations with microsecond temporal resolution.
Abstract: Optical approaches for observing the dynamics of single molecules have required pico- to nanomolar concentrations of fluorophore in order to isolate individual molecules. However, many biologically relevant processes occur at micromolar ligand concentrations, necessitating a reduction in the conventional observation volume by three orders of magnitude. We show that arrays of zero-mode waveguides consisting of subwavelength holes in a metal film provide a simple and highly parallel means for studying single-molecule dynamics at micromolar concentrations with microsecond temporal resolution. We present observations of DNA polymerase activity as an example of the effectiveness of zero-mode waveguides for performing single-molecule experiments at high concentrations.

1,612 citations

Journal ArticleDOI
TL;DR: This Review explores issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application.
Abstract: From diagnosis of life-threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors.

1,259 citations

References
More filters
Book
01 Jan 1981
TL;DR: In this article, the authors introduce the Fokker-planck equation, the Langevin approach, and the diffusion type of the master equation, as well as the statistics of jump events.
Abstract: Preface to the first edition. Preface to the second edition. Abbreviated references. I. Stochastic variables. II. Random events. III. Stochastic processes. IV. Markov processes. V. The master equation. VI. One-step processes. VII. Chemical reactions. VIII. The Fokker-Planck equation. IX. The Langevin approach. X. The expansion of the master equation. XI. The diffusion type. XII. First-passage problems. XIII. Unstable systems. XIV. Fluctuations in continuous systems. XV. The statistics of jump events. XVI. Stochastic differential equations. XVII. Stochastic behavior of quantum systems.

7,858 citations

01 Jan 1992
Abstract: Preface to the first edition. Preface to the second edition. Abbreviated references. I. Stochastic variables. II. Random events. III. Stochastic processes. IV. Markov processes. V. The master equation. VI. One-step processes. VII. Chemical reactions. VIII. The Fokker-Planck equation. IX. The Langevin approach. X. The expansion of the master equation. XI. The diffusion type. XII. First-passage problems. XIII. Unstable systems. XIV. Fluctuations in continuous systems. XV. The statistics of jump events. XVI. Stochastic differential equations. XVII. Stochastic behavior of quantum systems.

6,887 citations


"Single-Molecule Enzymatic Dynamics" refers background in this paper

  • ...Chemical kinetics holds for Markovian processes ( 34 ), implying that an enzyme molecule undergoing a turnover exhibits no memory of its preceding turnovers....

    [...]

Journal ArticleDOI
13 Dec 1991-Science
TL;DR: The concepts that emerge from studies of the conformational substates and the motions between them permit a quantitative discussion of one simple reaction, the binding of small ligands such as carbon monoxide to myoglobin.
Abstract: Recent experiments, advances in theory, and analogies to other complex systems such as glasses and spin glasses yield insight into protein dynamics. The basis of the understanding is the observation that the energy landscape is complex: Proteins can assume a large number of nearly isoenergetic conformations (conformational substates). The concepts that emerge from studies of the conformational substates and the motions between them permit a quantitative discussion of one simple reaction, the binding of small ligands such as carbon monoxide to myoglobin.

2,902 citations

Book
01 Jan 1987
TL;DR: In this paper, the fundamentals conditions for equilibrium and stability of non-equilibrium systems are defined. And the Monte Carlo method in statistical mechanics is used for non-interacting (ideal) systems.
Abstract: Thermodynamics, fundamentals conditions for equilibrium and stability statistical mechanics non-interacting (ideal) systems statistical mechanical theory of phase transitions Monte Carlo method in statistical mechanics classical fluids statistical mechanics of non-equilibrium systems.

2,510 citations


"Single-Molecule Enzymatic Dynamics" refers methods in this paper

  • ...The fluctuation dissipation theorem applies to the reversible chemical reaction in Eq. 1 as follows ( 37 ):...

    [...]