scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Single Nucleotide Polymorphism-based Genetic Diversity in the Reference Set of Peanut (Arachis spp.) by Developing and Applying Cost-Effective Kompetitive Allele Specific Polymerase Chain Reaction Genotyping Assays

TL;DR: These validated and highly informative GKAMs may be useful for genetics and breeding applications in Arachis species and are screened on 280 diverse genotypes of the reference set for estimating diversity features and elucidating genetic relationships.
Abstract: Kompetitive allele-specific polymerase chain reaction (KASP) assays have emerged as cost-effective marker assays especially for molecular breeding applications. Therefore, a set of 96 informative single nucleotide polymorphisms (SNPs) was used to develop KASP assays in groundnut or peanut (Arachis spp.). Developed assays were designated as groundnut KASP assay markers (GKAMs) and screened on 94 genotypes (validation set) that included parental lines of 27 mapping populations, seven synthetic autotetraploid and amphidiploid lines, and 19 wild species accessions. As a result, 90 GKAMs could be validated and 73 GKAMs showed polymorphism in the validation set. Validated GKAMs were screened on 280 diverse genotypes of the reference set for estimating diversity features and elucidating genetic relationships. Cluster analysis of marker allelic data grouped accessions according to their genome type, subspecies, and botanical variety. The subspecies Arachis hypogaea L. subsp. fastigiata Waldron and A. hypogaea subsp. hypogaea formed distinct cluster; however, some overlaps were found indicating their frequent intercrossing during the course of evolution. The wild species, having diploid genomes, were grouped into a single cluster. The average polymorphism information content value for polymorphic GKAMs was 0.32 in the validation set and 0.31 in the reference set. These validated and highly informative GKAMs may be useful for genetics and breeding applications in Arachis species. P

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The current and future uses of next-generation sequencing technologies, both for developing crops with improved traits and for increasing the efficiency of modern plant breeding, as a step towards meeting the challenge of feeding a growing world population.
Abstract: Next generation sequencing (NGS) technologies are being used to generate whole genome sequences for a wide range of crop species. When combined with precise phenotyping methods, these technologies provide a powerful and rapid tool for identifying the genetic basis of agriculturally important traits and for predicting the breeding value of individuals in a plant breeding population. Here we summarize current trends and future prospects for utilizing NGS-based technologies to develop crops with improved trait performance and increase the efficiency of modern plant breeding. It is our hope that the application of NGS technologies to plant breeding will help us to meet the challenge of feeding a growing world population.

348 citations

Journal ArticleDOI
TL;DR: The range of options available to modern breeders for integrating SNP markers into their programs, whether by outsourcing to service providers or setting up in-house genotyping facilities are discussed, and an example of SNP deployment for rice research and breeding is provided as demonstrated by the Genotyping Services Lab at the International Rice Research Institute.
Abstract: Recent advances in next-generation sequencing (NGS) and single nucleotide polymorphism (SNP) genotyping promise to greatly accelerate crop improvement if properly deployed. High-throughput SNP genotyping offers a number of advantages over previous marker systems, including an abundance of markers, rapid processing of large populations, a variety of genotyping systems to meet different needs, and straightforward allele calling and database storage due to the bi-allelic nature of SNP markers. NGS technologies have enabled rapid whole genome sequencing, providing extensive SNP discovery pools to select informative markers for different sets of germplasm. Highly multiplexed fixed array platforms have enabled powerful approaches such as genome-wide association studies. On the other hand, routine deployment of trait-specific SNP markers requires flexible, low-cost systems for genotyping smaller numbers of SNPs across large breeding populations, using platforms such as Fluidigm's Dynamic Arrays™, Douglas Scientific's Array Tape™, and LGC's automated systems for running KASP™ markers. At the same time, genotyping by sequencing (GBS) is rapidly becoming popular for low-cost high-density genome-wide scans through multiplexed sequencing. This review will discuss the range of options available to modern breeders for integrating SNP markers into their programs, whether by outsourcing to service providers or setting up in-house genotyping facilities, and will provide an example of SNP deployment for rice research and breeding as demonstrated by the Genotyping Services Lab at the International Rice Research Institute.

321 citations


Cites methods from "Single Nucleotide Polymorphism-base..."

  • ...…described for Sequence-Based Genotyping (SBG; Truong et al. 2012; Poecke et al. 2013), Diversity Array Technology sequencing (DArTseq; Cruz et al. 2013); RESTriction Fragment SEQuencing (RESTseq; Stolle and Moritz 2013), and Restriction Enzyme Site Comparative Analysis (RESCAN; Kim and Tai 2013)....

    [...]

Journal ArticleDOI
TL;DR: The role of polyploidy in angiosperm evolution, the domestication process and crop improvement is explored, and the potential of modern technologies, particularly next-generation sequencing, to inform us on the patterns and processes governingpolyploid crop improvement and phenotypic change subsequent to domestication is focused on.
Abstract: Polyploidy, or whole genome multiplication, is ubiquitous among angiosperms. Many crop species are relatively recent allopolyploids, resulting from interspecific hybridization and polyploidy. Thus, an appreciation of the evolutionary consequences of (allo)polyploidy is central to our understanding of crop plant domestication, agricultural improvement, and the evolution of angiosperms in general. Indeed, many recent insights into plant biology have been gleaned from polyploid crops, including, but not limited to wheat, tobacco, sugarcane, apple, and cotton. A multitude of evolutionary processes affect polyploid genomes, including rapid and substantial genome reorganization, transgressive gene expression alterations, gene fractionation, gene conversion, genome downsizing, and sub- and neofunctionalization of duplicate genes. Often these genomic changes are accompanied by heterosis, robustness, and the improvement of crop yield, relative to closely related diploids. Historically, however, the genome-wide analysis of polyploid crops has lagged behind those of diploid crops and other model organisms. This lag is partly due to the difficulties in genome assembly, resulting from the genomic complexities induced by combining two or more evolutionarily diverged genomes into a single nucleus and by the significant size of polyploid genomes. In this review, we explore the role of polyploidy in angiosperm evolution, the domestication process and crop improvement. We focus on the potential of modern technologies, particularly next-generation sequencing, to inform us on the patterns and processes governing polyploid crop improvement and phenotypic change subsequent to domestication.

298 citations

Journal ArticleDOI
TL;DR: This review aims to combine the phylogenetic and genetic diversity approaches to better illustrate the origin, domestication history and preserved germplasm of major legume crops from 13 genera of six tribes and to indicate further potential both for science and agriculture.
Abstract: Economically, legumes (Fabaceae) represent the second most important family of crop plants after the grass family, Poaceae. Grain legumes account for 27% of world crop production and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes provide vital part of animal feed. Fabaceae, the third largest family of flowering plants, has traditionally been divided into the following three subfamilies: Caesalpinioideae, Mimosoideae, and Papilionoideae, all together with 800 genera and 20,000 species. The latter subfamily contains most of the major cultivated food and feed crops. Among the grain legumes are some of mankind's earliest crop plants, whose domestication parallelled that of cereals: Soybean in China; faba bean, lentil, chickpea and pea in the Fertile Crescent of the Near East; cowpeas and bambara groundnut in Africa; soybean and mungbeans in East Asia; pigeonpea and the grams in South Asia; and common bean, lima bean, scarlet runner bean, tepary bean and lupin in Central and South America. The importance of legumes is evidenced by their high representation in ex situ germplasm collections, with more than 1,000,000 accessions worldwide. A detailed knowledge of the phylogenetic relationships of the Fabaceae is essential for understanding the origin and diversification of this economically and ecologically important family of angiosperms. This review aims to combine the phylogenetic and genetic diversity approaches to better illustrate the origin, domestication history and preserved germplasm of major legume crops from 13 genera of six tribes and to indicate further potential both for science and agriculture.

251 citations


Cites background from "Single Nucleotide Polymorphism-base..."

  • ...Nevertheless, in the few other studies in which large germplasm sets were used reported low levels of diversity in primary gene pools, while better genetic diversity still exists within the wild relatives (Varshney et al., 2009a; Koppolu et al., 2010; Khera et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.
Abstract: Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.

164 citations

References
More filters
Journal ArticleDOI
TL;DR: The neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods for reconstructing phylogenetic trees from evolutionary distance data.
Abstract: A new method called the neighbor-joining method is proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike tree. The branch lengths as well as the topology of a parsimonious tree can quickly be obtained by using this method. Using computer simulation, we studied the efficiency of this method in obtaining the correct unrooted tree in comparison with that of five other tree-making methods: the unweighted pair group method of analysis, Farris's method, Sattath and Tversky's method, Li's method, and Tateno et al.'s modified Farris method. The new, neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods.

57,055 citations

Journal ArticleDOI
TL;DR: PowerMarker delivers a data-driven, integrated analysis environment (IAE) for genetic data that accelerates the analysis lifecycle and enables users to maintain data integrity throughout the process.
Abstract: Summary: PowerMarker delivers a data-driven, integrated analysis environment (IAE) for genetic data. The IAE integrates data management, analysis and visualization in a user-friendly graphical user interface. It accelerates the analysis lifecycle and enables users to maintain data integrity throughout the process. An ever-growing list of more than 50 different statistical analyses for genetic markers has been implemented in PowerMarker. Availability: www.powermarker.net Contact: powermarker@hotmail.com

3,808 citations

Journal ArticleDOI
TL;DR: Dendroscope is a user-friendly program for visualizing and navigating phylogenetic trees, for both small and large datasets, and is optimized to run interactively on trees containing hundreds of thousands of taxa.
Abstract: Research in evolution requires software for visualizing and editing phylogenetic trees, for increasingly very large datasets, such as arise in expression analysis or metagenomics, for example. It would be desirable to have a program that provides these services in an effcient and user-friendly way, and that can be easily installed and run on all major operating systems. Although a large number of tree visualization tools are freely available, some as a part of more comprehensive analysis packages, all have drawbacks in one or more domains. They either lack some of the standard tree visualization techniques or basic graphics and editing features, or they are restricted to small trees containing only tens of thousands of taxa. Moreover, many programs are diffcult to install or are not available for all common operating systems. We have developed a new program, Dendroscope, for the interactive visualization and navigation of phylogenetic trees. The program provides all standard tree visualizations and is optimized to run interactively on trees containing hundreds of thousands of taxa. The program provides tree editing and graphics export capabilities. To support the inspection of large trees, Dendroscope offers a magnification tool. The software is written in Java 1.4 and installers are provided for Linux/Unix, MacOS X and Windows XP. Dendroscope is a user-friendly program for visualizing and navigating phylogenetic trees, for both small and large datasets.

1,235 citations


"Single Nucleotide Polymorphism-base..." refers methods in this paper

  • ...Furthermore, tree construction was also accomplished using the sotware Dendroscope version 3.2.2 for better visual representation as detailed in Huson et al. (2007). he lines were then analyzed with respect to the three categories, namely botanical variety, species, and genome type....

    [...]

Journal ArticleDOI
TL;DR: The basic principles underlying different hybridization-based and PCR based approaches, making use of microsatellites, have been outlined and relevant literature on the subject has been reviewed and critically discussed.
Abstract: In recent years, a variety of molecular markers, based on microsatellites or simple sequence repeats (SSRs) have become the markers of choice, thus necessitating their development and use in a variety of plant systems. In this review, the basic principles underlying different hybridization-based (oligonucleotide fingerprinting) and PCR based approaches (STMS, MP-PCR, AMP-PCR/ ISSR/ ASSR, RAMPs/ dRAMPs, SAMPL), making use of microsatellites, have been outlined. Different methods for enrichment of genomic libraries for microsatellites have also been outlined. Relevant literature on the subject, giving a summary of results obtained using each approach, has been reviewed and critically discussed. The review also includes a discussion on literature, which deals with the use of microsatellites in genome mapping, gene tagging, DNA fingerprinting, characterization of germplasm and cytogenetics research. Special emphasis has been laid on the genome of bread wheat, where the work done in the authors' own laboratory has also been briefly reviewed.

910 citations


"Single Nucleotide Polymorphism-base..." refers background in this paper

  • ...he SSR markers, which are known for their high polymorphism information content (PIC) and resourcefulness as molecular tools (Gupta and Varshney, 2000), have enabled discrimination and assessment of genetic variation in peanut germplasm revealing very low to moderate levels of polymorphism in cultivated germplasm as compared to wild relatives (Gautami et al....

    [...]

Journal ArticleDOI
TL;DR: This review outlines some important areas such as the large-scale development of molecular markers for linkage mapping, association mapping, wide crosses and alien introgression, epigenetic modifications, transcript profiling, population genetics and de novo genome/organellar genome assembly for which these technologies are expected to advance crop genetics and breeding, leading to crop improvement.

822 citations


"Single Nucleotide Polymorphism-base..." refers background in this paper

  • ...…tools (Gupta and Varshney, 2000), have enabled discrimination and assessment of genetic variation in peanut germplasm revealing very low to moderate levels of polymorphism in cultivated germplasm as compared to wild relatives (Gautami et al., 2009; Varshney et al., 2009a; Koppolu et al., 2010)....

    [...]

  • ...In recent years, due to the advent of next-generation sequencing and faster genotyping technologies, new marker systems such as single nucleotide polymorphisms (SNPs) have attracted substantial attention and have emerged as the marker of choice in crop breeding (Varshney et al., 2009b)....

    [...]

Related Papers (5)