scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Single phase three-level quasi-z-source inverter with a new boost modulation technique

TL;DR: A new modulation technique for a single phase three-level neutral-point-clamped qZS inverter for applications that require input voltage gain and high quality of the output voltage is described.
Abstract: This paper describes a new modulation technique for a single phase three-level neutral-point-clamped qZS inverter. The proposed converter is intended for applications that require input voltage gain and high quality of the output voltage. The simulation and experimental results are presented and discussed.
Citations
More filters
01 Jan 2015
TL;DR: An overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems is presented in this paper.
Abstract: Photovoltaic (PV) energy has grown at an average annual rate of 60% in the last five years, surpassing one third of the cumulative wind energy installed capacity, and is quickly becoming an important part of the energy mix in some regions and power systems. This has been driven by a reduction in the cost of PV modules. This growth has also triggered the evolution of classic PV power converters from conventional singlephase grid-tied inverters to more complex topologies to increase efficiency, power extraction from the modules, and reliability without impacting the cost. This article presents an overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems. In addition, the recent research and emerging PV converter technology are discussed, highlighting their possible advantages compared with the present technology. Solar PV energy conversion systems have had a huge growth from an accumulative total power equal to approximately 1.2 GW in 1992 to 136 GW in 2013 (36 GW during 2013) [1]. This phenomenon has been possible because of several factors all working together to push the PV energy to cope with one important position today (and potentially a fundamental position in the near future). Among these factors are the cost reduction and increase in efficiency of the PV modules, the search for alternative clean energy sources (not based on fossil fuels), increased environmental awareness, and favorable political regulations from local governments (establishing feed-in tariffs designed to accelerate investment in renewable energy technologies). It has become usual to see PV systems installed on the roofs of houses or PV farms next to the roads in the countryside. Grid-connected PV systems account for more than 99% of the PV installed capacity compared to

772 citations

Journal ArticleDOI
TL;DR: An overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems is presented in this article.
Abstract: Photovoltaic (PV) energy has grown at an average annual rate of 60% in the last five years, surpassing one third of the cumulative wind energy installed capacity, and is quickly becoming an important part of the energy mix in some regions and power systems. This has been driven by a reduction in the cost of PV modules. This growth has also triggered the evolution of classic PV power converters from conventional single-phase grid-tied inverters to more complex topologies to increase efficiency, power extraction from the modules, and reliability without impacting the cost. This article presents an overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems. In addition, the recent research and emerging PV converter technology are discussed, highlighting their possible advantages compared with the present technology.

772 citations


Cites background from "Single phase three-level quasi-z-so..."

  • ...neutral point clamped qZSI has the advantages similar to those of the two-level topology; moreover, it could be used with the single or multiple PV sources [33]....

    [...]

Journal ArticleDOI
TL;DR: This review paper is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers.
Abstract: Impedance networks cover the entire of electric power conversion from dc (converter, rectifier), ac (inverter), to phase and frequency conversion (ac-ac) in a wide range of applications. Various converter topologies have been reported in the literature to overcome the limitations and problems of the traditional voltage source, current source as well as various classical buck-boost, unidirectional, and bidirectional converter topologies. Proper implementation of the impedance-source network with appropriate switching configurations and topologies reduces the number of power conversion stages in the system power chain, which may improve the reliability and performance of the power system. The first part of this paper provides a comprehensive review of the various impedance-source-networks-based power converters and discusses the main topologies from an application point of view. This review paper is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers. A comprehensive review of various modeling, control, and modulation techniques for the impedance-source converters/inverters will be presented in Part II.

601 citations


Cites methods from "Single phase three-level quasi-z-so..."

  • ...ac–ac and matrix converters [72]–[83], and nonisolated and isolated dc–dc converters [44]–[58]....

    [...]

  • ...in [72] with a modified modulation technique [see Fig....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a three-level neutral-point-clamped quasi-Z-source inverter is proposed for single-stage buck-boost multilevel inverters.
Abstract: This study presents a novel three-level neutral-point-clamped quasi-Z-source inverter in the single-stage buck-boost multilevel inverter family. The topology was derived by combining the properties of the quasi-Z-source network with those of a three-level neutral point clamped inverter. It features such advantages as low voltage stress of the switches, single-stage buck-boost power conversion, continuous input current, short-circuit withstandability and low total harmonic distortion of the output voltage and current. The authors present a steady state analysis of the topology along with a special modulation technique to distribute shoot-through states during the whole fundamental period. Component design guidelines for a single-phase case study system are described. All the findings have been confirmed by simulations and experiments. The topology could be recommended for applications requiring continuous input current, high input voltage gain and enhanced quality of the output voltage.

149 citations

Journal ArticleDOI
TL;DR: In this article, a three-phase multilevel quasi-Z-source inverter (qZSI) topology operating in normal and fault-tolerant operation mode is presented.
Abstract: This paper presents a three-phase multilevel quasi-Z-source inverter (qZSI) topology operating in normal and fault-tolerant operation mode. This structure is composed by two symmetrical quasi-Z-source networks and a three-phase T-type inverter. Besides the intrinsic advantages of multilevel voltage source inverters, the proposed structure is also characterized by their semiconductor fault tolerance capability. This feature is only obtained through changes on the modulation scheme after the semiconductor fault and does not require additional extra-phase legs or collective switching states. In certain fault types, the reduction of the output power capacity will be compensated by the boost characteristic of the qZSI. The fault-tolerant behavior of the proposed topology is demonstrated by several simulation results of the converter in normal and fault condition. To validate the characteristics of this multilevel qZSI, an experimental prototype was also built to experimentally confirm the results.

107 citations

References
More filters
Journal ArticleDOI
10 Dec 2002
TL;DR: The Z-source converter employs a unique impedance network to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source converters where a capacitor and inductor are used, respectively.
Abstract: This paper presents an impedance-source (or impedance-fed) power converter (abbreviated as Z-source converter) and its control method for implementing DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. The Z-source converter employs a unique impedance network (or circuit) to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source (or current-fed) converters where a capacitor and inductor are used, respectively. The Z-source converter overcomes the conceptual and theoretical barriers and limitations of the traditional voltage-source converter (abbreviated as V-source converter) and current-source converter (abbreviated as I-source converter) and provides a novel power conversion concept. The Z-source concept can be applied to all DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. To describe the operating principle and control, this paper focuses on an example: a Z-source inverter for DC-AC power conversion needed in fuel cell applications. Simulation and experimental results are presented to demonstrate the new features.

2,851 citations


"Single phase three-level quasi-z-so..." refers background or methods in this paper

  • ...In these conditions the qZSI starts to work in a discontinuous conduction mode, which causes an over-boost effect and leads to instabilities [3-7]....

    [...]

  • ...There are several pulse width modulation (PWM) techniques that could be applied for the 3L-NPC qZSI [4], [11]-[14]....

    [...]

Proceedings ArticleDOI
15 Jun 2008
TL;DR: In this paper, theoretical results are shown for several novel inverters, which are similar to the Z-source inverters presented in previous works, but have several advantages, including in some combination; lower component ratings, reduced source stress, reduced component count and simplified control strategies.
Abstract: In this paper, theoretical results are shown for several novel inverters. These inverters are similar to the Z-source inverters presented in previous works, but have several advantages, including in some combination; lower component ratings, reduced source stress, reduced component count and simplified control strategies. Like the Z-source inverter, these inverters are particularly suited for applications which require a large range of gain, such as in motor controllers or renewable energy. Simulation and experimental results are shown for one topology to verify the analysis. Also, a back-to-back inverter system featuring bidirectionality on both inverters, as well as secondary energy storage with only a single additional switch, is shown.

1,031 citations

Journal ArticleDOI
TL;DR: In this article, a maximum boost control method for the Z-source inverter is presented to produce the maximum voltage boost under a given modulation index, and the relationship of voltage gain versus modulation index and voltage stress versus voltage gain is analyzed in detail and verified by simulation and experiment.
Abstract: This paper explores control methods for the Z-source inverter and their relationships of voltage boost versus modulation index. A maximum boost control is presented to produce the maximum voltage boost (or voltage gain) under a given modulation index. The control method, relationships of voltage gain versus modulation index, and voltage stress versus voltage gain are analyzed in detail and verified by simulation and experiment.

769 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed two constant boost control methods for the Z-source inverter, which can obtain maximum voltage gain at any given modulation index without producing any low-frequency ripple that is related to the output frequency and minimize the voltage stress at the same time.
Abstract: This paper proposes two constant boost-control methods for the Z-source inverter, which can obtain maximum voltage gain at any given modulation index without producing any low-frequency ripple that is related to the output frequency and minimize the voltage stress at the same time. Thus, the Z-network requirement will be independent of the output frequency and determined only by the switching frequency. The relationship of voltage gain to modulation index is analyzed in detail and verified by simulation and experiments.

685 citations

Journal ArticleDOI
TL;DR: In this article, the modulation requirements of a single-phase H-bridge Z-source inverter were analyzed, and the analysis was extended to cover the more complex three-phase-leg and four-phaseleg Zsource inverters with carrier-based implementation reference equations derived for all the inverters.
Abstract: Z-Source inverters have recently been proposed as an alternative power conversion concept as they have both voltage buck and boost capabilities. These inverters use a unique impedance network, coupled between the power source and converter circuit, to provide both voltage buck and boost properties, which cannot be achieved with conventional voltage-source and current-source inverters. To facilitate understanding of Z-source inverter modulation, this paper presents a detailed analysis, showing how various conventional pulse-width modulation strategies can be modified to switch a voltage-type Z-source inverter either continuously or discontinuously, while retaining all the unique harmonic performance features of these conventional modulation strategies. This paper starts by analyzing the modulation requirements of a single-phase H-bridge Z-source inverter, and subsequently extends the analysis to cover the more complex three-phase-leg and four-phase-leg Z-source inverters, with carrier-based implementation reference equations derived for all the inverters. The theoretical and modulation concepts presented have been verified both in simulation and experimentally.

441 citations