scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Single Shot Text Detector with Regional Attention

TL;DR: This paper proposed an attention mechanism which roughly identifies text regions via an automatically learned attentional map, which substantially suppresses background interference in the convolutional features, which is the key to producing accurate inference of words, particularly at extremely small sizes.
Abstract: We present a novel single-shot text detector that directly outputs word-level bounding boxes in a natural image. We propose an attention mechanism which roughly identifies text regions via an automatically learned attentional map. This substantially suppresses background interference in the convolutional features, which is the key to producing accurate inference of words, particularly at extremely small sizes. This results in a single model that essentially works in a coarse-to-fine manner. It departs from recent FCN-based text detectors which cascade multiple FCN models to achieve an accurate prediction. Furthermore, we develop a hierarchical inception module which efficiently aggregates multi-scale inception features. This enhances local details, and also encodes strong context information, allowing the detector to work reliably on multi-scale and multi-orientation text with single-scale images. Our text detector achieves an F-measure of 77% on the ICDAR 2015 benchmark, advancing the state-of-the-art results in [18, 28]. Demo is available at: http://sstd.whuang.org/.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review recent findings on adversarial examples for DNNs, summarize the methods for generating adversarial samples, and propose a taxonomy of these methods.
Abstract: With rapid progress and significant successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks (DNNs) have been recently found vulnerable to well-designed input samples called adversarial examples . Adversarial perturbations are imperceptible to human but can easily fool DNNs in the testing/deploying stage. The vulnerability to adversarial examples becomes one of the major risks for applying DNNs in safety-critical environments. Therefore, attacks and defenses on adversarial examples draw great attention. In this paper, we review recent findings on adversarial examples for DNNs, summarize the methods for generating adversarial examples, and propose a taxonomy of these methods. Under the taxonomy, applications for adversarial examples are investigated. We further elaborate on countermeasures for adversarial examples. In addition, three major challenges in adversarial examples and the potential solutions are discussed.

1,203 citations

Posted Content
TL;DR: This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019), and makes an in-deep analysis of their challenges as well as technical improvements in recent years.
Abstract: Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.

802 citations

Proceedings ArticleDOI
Young Min Baek1, Bado Lee1, Dongyoon Han1, Sangdoo Yun1, Hwalsuk Lee1 
15 Jun 2019
TL;DR: Zhang et al. as mentioned in this paper proposed a new scene text detection method to effectively detect text area by exploring each character and affinity between characters, which significantly outperforms the state-of-the-art detectors.
Abstract: Scene text detection methods based on neural networks have emerged recently and have shown promising results. Previous methods trained with rigid word-level bounding boxes exhibit limitations in representing the text region in an arbitrary shape. In this paper, we propose a new scene text detection method to effectively detect text area by exploring each character and affinity between characters. To overcome the lack of individual character level annotations, our proposed framework exploits both the given character-level annotations for synthetic images and the estimated character-level ground-truths for real images acquired by the learned interim model. In order to estimate affinity between characters, the network is trained with the newly proposed representation for affinity. Extensive experiments on six benchmarks, including the TotalText and CTW-1500 datasets which contain highly curved texts in natural images, demonstrate that our character-level text detection significantly outperforms the state-of-the-art detectors. According to the results, our proposed method guarantees high flexibility in detecting complicated scene text images, such as arbitrarily-oriented, curved, or deformed texts.

635 citations

Proceedings ArticleDOI
Xuebo Liu1, Ding Liang1, Shi Yan1, Dagui Chen1, Yu Qiao1, Junjie Yan1 
18 Jun 2018
TL;DR: In this article, a unified end-to-end trainable Fast Oriented Text Spotting (FOTS) network is proposed for simultaneous detection and recognition, sharing computation and visual information among the two complementary tasks.
Abstract: Incidental scene text spotting is considered one of the most difficult and valuable challenges in the document analysis community. Most existing methods treat text detection and recognition as separate tasks. In this work, we propose a unified end-to-end trainable Fast Oriented Text Spotting (FOTS) network for simultaneous detection and recognition, sharing computation and visual information among the two complementary tasks. Specifically, RoIRotate is introduced to share convolutional features between detection and recognition. Benefiting from convolution sharing strategy, our FOTS has little computation overhead compared to baseline text detection network, and the joint training method makes our method perform better than these two-stage methods. Experiments on ICDAR 2015, ICDAR 2017 MLT, and ICDAR 2013 datasets demonstrate that the proposed method outperforms state-of-the-art methods significantly, which further allows us to develop the first real-time oriented text spotting system which surpasses all previous state-of-the-art results by more than 5% on ICDAR 2015 text spotting task while keeping 22.6 fps.

434 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: The proposed method named Rotation-sensitive Regression Detector (RRD) achieves state-of-the-art performance on several oriented scene text benchmark datasets, including ICDAR 2015, MSRA-TD500, RCTW-17, and COCO-Text, and achieves a significant improvement on a ship collection dataset, demonstrating its generality on oriented object detection.
Abstract: Text in natural images is of arbitrary orientations, requiring detection in terms of oriented bounding boxes. Normally, a multi-oriented text detector often involves two key tasks: 1) text presence detection, which is a classification problem disregarding text orientation; 2) oriented bounding box regression, which concerns about text orientation. Previous methods rely on shared features for both tasks, resulting in degraded performance due to the incompatibility of the two tasks. To address this issue, we propose to perform classification and regression on features of different characteristics, extracted by two network branches of different designs. Concretely, the regression branch extracts rotation-sensitive features by actively rotating the convolutional filters, while the classification branch extracts rotation-invariant features by pooling the rotation-sensitive features. The proposed method named Rotation-sensitive Regression Detector (RRD) achieves state-of-the-art performance on several oriented scene text benchmark datasets, including ICDAR 2015, MSRA-TD500, RCTW-17, and COCO-Text. Furthermore, RRD achieves a significant improvement on a ship collection dataset, demonstrating its generality on oriented object detection.

415 citations

References
More filters
Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract: Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

28,225 citations

Posted Content
TL;DR: Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Abstract: State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features---using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model, our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

23,183 citations

Book ChapterDOI
08 Oct 2016
TL;DR: The approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location, which makes SSD easy to train and straightforward to integrate into systems that require a detection component.
Abstract: We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For \(300 \times 300\) input, SSD achieves 74.3 % mAP on VOC2007 test at 59 FPS on a Nvidia Titan X and for \(512 \times 512\) input, SSD achieves 76.9 % mAP, outperforming a comparable state of the art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at https://github.com/weiliu89/caffe/tree/ssd.

19,543 citations