scispace - formally typeset
Search or ask a question

Site-Selective C−H Arylation of Primary Aliphatic Amines Enabled by a Catalytic Transient Directing Group

TL;DR: In this article, a palladium-catalysed γ-arylation of primary alkylamines is achieved using an inexpensive, catalytic and transient directing group, which can be used to accelerate the transition-metal-catalyzed direct C(sp3)−H functionalization.
Abstract: Transition-metal-catalysed direct C(sp3)−H functionalization of primary aliphatic amines is an attractive – but elusive – process that could provide efficient access to biologically and pharmaceutically important compounds. Now, a palladium-catalysed γ-arylation of primary alkylamines is achieved using an inexpensive, catalytic and transient directing group.
Citations
More filters
Journal ArticleDOI
TL;DR: A number of mono- and bidentate ligands have also proven to be effective for accelerating C(sp3)-H activation directed by weakly coordinating auxiliaries, which provides great opportunities to control reactivity and selectivity in Pd-catalyzed C-H functionalization reactions.
Abstract: This Review summarizes the advancements in Pd-catalyzed C(sp3)–H activation via various redox manifolds, including Pd(0)/Pd(II), Pd(II)/Pd(IV), and Pd(II)/Pd(0). While few examples have been reported in the activation of alkane C–H bonds, many C(sp3)–H activation/C–C and C–heteroatom bond forming reactions have been developed by the use of directing group strategies to control regioselectivity and build structural patterns for synthetic chemistry. A number of mono- and bidentate ligands have also proven to be effective for accelerating C(sp3)–H activation directed by weakly coordinating auxiliaries, which provides great opportunities to control reactivity and selectivity (including enantioselectivity) in Pd-catalyzed C–H functionalization reactions.

1,414 citations

Journal ArticleDOI
TL;DR: This Perspective highlights some of the most pressing challenges to be overcome from the industrial viewpoint — such as the development of reactions tolerating specific functionalities — and encourages stronger industry–academia relationships.
Abstract: Despite decades of ground-breaking research in academia, organic synthesis is still a rate-limiting factor in drug-discovery projects. Here we present some current challenges in synthetic organic chemistry from the perspective of the pharmaceutical industry and highlight problematic steps that, if overcome, would find extensive application in the discovery of transformational medicines. Significant synthesis challenges arise from the fact that drug molecules typically contain amines and N-heterocycles, as well as unprotected polar groups. There is also a need for new reactions that enable non-traditional disconnections, more C-H bond activation and late-stage functionalization, as well as stereoselectively substituted aliphatic heterocyclic ring synthesis, C-X or C-C bond formation. We also emphasize that syntheses compatible with biomacromolecules will find increasing use, while new technologies such as machine-assisted approaches and artificial intelligence for synthesis planning have the potential to dramatically accelerate the drug-discovery process. We believe that increasing collaboration between academic and industrial chemists is crucial to address the challenges outlined here.

761 citations

Journal ArticleDOI
TL;DR: This review broadly discusses various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Abstract: During the past decades, synthetic organic chemistry discovered that directing group assisted C–H activation is a key tool for the expedient and siteselective construction of C–C bonds. Among the v...

573 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive summary of organocatalysis in inert C-H bond functionalization over the past two decades as well as those activated benzylic, allylic, and C- H bonds alpha to the heteroatom such as nitrogen and oxygen.
Abstract: As two coexisting and fast-growing research fields in modern synthetic chemistry, the merging of organocatalysis and C–H bond functionalization is well foreseeable, and the joint force along this line has been demonstrated to be a powerful approach in making inert C–H bond functionalization more viable, predictable, and selective. In this review, we provide a comprehensive summary of organocatalysis in inert C–H bond functionalization over the past two decades. The review is arranged by types of inert C–H bonds including alkane C–H, arene C–H, and vinyl C–H as well as those activated benzylic C–H, allylic C–H, and C–H bonds alpha to the heteroatom such as nitrogen and oxygen. In each section, the discussion is classified by the explicit organocatalytic mode involved.

484 citations

Journal ArticleDOI
TL;DR: This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition- Metal-Catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3 )-H bonds.
Abstract: The functionalization of C(sp3 )-H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C-H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition-metal-catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3 )-H bonds. For each strategy, the scope, the reactivity of different C-H bonds, the position of the reacting C-H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C-H functionalization reactions and inspire future research in this area.

467 citations

References
More filters
Journal ArticleDOI
TL;DR: This is the first comprehensive review encompassing the large body of work in this field over the past 5 years, and will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium.
Abstract: 1.1 Introduction to Pd-catalyzed directed C–H functionalization The development of methods for the direct conversion of carbon–hydrogen bonds into carbon-oxygen, carbon-halogen, carbon-nitrogen, carbon-sulfur, and carbon-carbon bonds remains a critical challenge in organic chemistry. Mild and selective transformations of this type will undoubtedly find widespread application across the chemical field, including in the synthesis of pharmaceuticals, natural products, agrochemicals, polymers, and feedstock commodity chemicals. Traditional approaches for the formation of such functional groups rely on pre-functionalized starting materials for both reactivity and selectivity. However, the requirement for installing a functional group prior to the desired C–O, C–X, C–N, C–S, or C–C bond adds costly chemical steps to the overall construction of a molecule. As such, circumventing this issue will not only improve atom economy but also increase the overall efficiency of multi-step synthetic sequences. Direct C–H bond functionalization reactions are limited by two fundamental challenges: (i) the inert nature of most carbon-hydrogen bonds and (ii) the requirement to control site selectivity in molecules that contain diverse C–H groups. A multitude of studies have addressed the first challenge by demonstrating that transition metals can react with C–H bonds to produce C–M bonds in a process known as “C–H activation”.1 The resulting C–M bonds are far more reactive than their C–H counterparts, and in many cases they can be converted to new functional groups under mild conditions. The second major challenge is achieving selective functionalization of a single C–H bond within a complex molecule. While several different strategies have been employed to address this issue, the most common (and the subject of the current review) involves the use of substrates that contain coordinating ligands. These ligands (often termed “directing groups”) bind to the metal center and selectively deliver the catalyst to a proximal C–H bond. Many different transition metals, including Ru, Rh, Pt, and Pd, undergo stoichiometric ligand-directed C–H activation reactions (also known as cyclometalation).2,3 Furthermore, over the past 15 years, a variety of catalytic carbon-carbon bond-forming processes have been developed that involve cyclometalation as a key step.1b–d,4 The current review will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium. Palladium complexes are particularly attractive catalysts for such transformations for several reasons. First, ligand-directed C–H functionalization at Pd centers can be used to install many different types of bonds, including carbon-oxygen, carbon-halogen, carbon-nitrogen, carbon-sulfur, and carbon-carbon linkages. Few other catalysts allow such diverse bond constructions,5,6,7 and this versatility is predominantly the result of two key features: (i) the compatibility of many PdII catalysts with oxidants and (ii) the ability to selectively functionalize cyclopalladated intermediates. Second, palladium participates in cyclometalation with a wide variety of directing groups, and, unlike many other transition metals, promotes C–H activation at both sp2 and sp3 C–H sites. Finally, the vast majority of Pd-catalyzed directed C–H functionalization reactions can be performed in the presence of ambient air and moisture, making them exceptionally practical for applications in organic synthesis. While several accounts have described recent advances, this is the first comprehensive review encompassing the large body of work in this field over the past 5 years (2004–2009). Both synthetic applications and mechanistic aspects of these transformations are discussed where appropriate, and the review is organized on the basis of the type of bond being formed.

5,179 citations

Journal ArticleDOI
TL;DR: A review of palladium-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle can be found in this paper.
Abstract: Pick your Pd partners: A number of catalytic systems have been developed for palladium-catalyzed CH activation/CC bond formation. Recent studies concerning the palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed. In the past decade, palladium-catalyzed CH activation/CC bond-forming reactions have emerged as promising new catalytic transformations; however, development in this field is still at an early stage compared to the state of the art in cross-coupling reactions using aryl and alkyl halides. This Review begins with a brief introduction of four extensively investigated modes of catalysis for forming CC bonds from CH bonds: PdII/Pd0, PdII/PdIV, Pd0/PdII/PdIV, and Pd0/PdII catalysis. A more detailed discussion is then directed towards the recent development of palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle. Despite the progress made to date, improving the versatility and practicality of this new reaction remains a tremendous challenge.

3,533 citations

Journal ArticleDOI
TL;DR: This review focuses on Rh-catalyzed methods for C-H bond functionalization, which have seen widespread success over the course of the last decade and are discussed in detail in the accompanying articles in this special issue of Chemical Reviews.
Abstract: Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

3,210 citations

Journal ArticleDOI
TL;DR: This Review provides an overview of C-H bond functionalization strategies for the rapid synthesis of biologically active compounds such as natural products and pharmaceutical targets.
Abstract: The direct functionalization of C-H bonds in organic compounds has recently emerged as a powerful and ideal method for the formation of carbon-carbon and carbon-heteroatom bonds. This Review provides an overview of C-H bond functionalization strategies for the rapid synthesis of biologically active compounds such as natural products and pharmaceutical targets.

2,391 citations

Journal ArticleDOI
TL;DR: This Review highlights the recent progress in the field of cross-dehydrogenative C sp 3C formations and provides a comprehensive overview on existing procedures and employed methodologies.
Abstract: Over the last decade, substantial research has led to the introduction of an impressive number of efficient procedures which allow the selective construction of CC bonds by directly connecting two different CH bonds under oxidative conditions. Common to these methodologies is the generation of the reactive intermediates in situ by activation of both CH bonds. This strategy was introduced by the group of Li as cross-dehydrogenative coupling (CDC) and discloses waste-minimized synthetic alternatives to classic coupling procedures which rely on the use of prefunctionalized starting materials. This Review highlights the recent progress in the field of cross-dehydrogenative C sp 3C formations and provides a comprehensive overview on existing procedures and employed methodologies.

1,528 citations