scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Six High-precision Transits of OGLE-TR-113b

TL;DR: In this article, the authors present six new transits of the hot Jupiter OGLE-TR-113b observed with MagIC on the Magellan Telescopes between 2007 January and 2009 May.
Abstract: We present six new transits of the hot Jupiter OGLE-TR-113b observed with MagIC on the Magellan Telescopes between 2007 January and 2009 May. We update the system parameters and revise the planetary radius to Rp = 1.084 ? 0.029RJ , where the error is dominated by stellar radius uncertainties. The new transit midtimes reveal no transit timing variations from a constant ephemeris of greater than 13 ? 28?s over two years, placing an upper limit of 1-2 M ? on the mass of any perturber in a 1:2 or 2:1 mean-motion resonance with OGLE-TR-113b. Combining the new transit epochs with five epochs published between 2002 and 2006, we find hints that the orbital period of the planet may not be constant, with the best fit indicating a decrease of ?ms?yr?1. If real, this change in period could result from either a long-period (more than eight years) timing variation due to a massive external perturber or more intriguingly from the orbital decay of the planet. The detection of a changing period is still tentative and requires additional observations, but if confirmed it would enable direct tests of tidal stability and dynamical models of close-in planets.
Citations
More filters
Book
01 May 2011
TL;DR: In this paper, the authors present an overview of the solar system and its evolution, including the formation and evolution of stars, asteroids, and free-floating planets, as well as their internal and external structures.
Abstract: 1. Introduction 2. Radial velocities 3. Astrometry 4. Timing 5. Microlensing 6. Transits 7. Imaging 8. Host stars 9. Brown dwarfs and free-floating planets 10. Formation and evolution 11. Interiors and atmospheres 12. The Solar System Appendixes References Index.

527 citations

DOI
01 May 2011
TL;DR: An overview of the processes described in this chapter is as follows in this paper, where the authors start with star formation in molecular clouds, and then gravitationally accumulate their mantles of ice and/or gas.
Abstract: PLANETARY SYSTEMS, the solar system amongst them, are believed to form as inevitable and common byproducts of star formation For orientation, an overview of the processes described in this chapter is as follows The present paradigm starts with star formation in molecular clouds Brown dwarfs are formed as the lowmass tail of this process, although some may be formed as a high-mass tail of planet formation Gas and dust in the collapsing molecular cloud which does not fall directly onto the protostar resides in a relatively long-lived accretion disk which provides the environment for the subsequent stages of planet formation Terrestrial-mass planets are formed within the disk through the progressive agglomeration of material denoted, as it grows in size, as dust, rocks, planetesimals and protoplanets A similar process typically occurring further out in the disk results in the cores of giant planets, which then gravitationally accumulate their mantles of ice and/or gas As the planet-forming bodies grow in mass, growth and dynamics become more dominated by gravitational interactions Towards the final phases, and before the remaining gas is lost through accretion or dispersal, the gas provides a viscous medium at least partially responsible for planetary migration Some migration also occurs during these later stages as a result of gravitational scattering between the (proto-)planets and the residual sea of planetesimals The final structural stabilisation of the planetary system may be affected by planet–planet interactions, until a configuration emerges which may be dynamically stable over billions of years The current observational data for exoplanet systems is broadly compatible with this overall picture Other constraints come from a substantial body of detailed observations of the solar system (Chapter 12) Context and present paradigm An understanding of howplanets formis essential in understanding and interpreting the considerable range of observed planetary system architectures and dynamics Today, the most widely considered solar nebula theory holds that planet formation in the solar system, and by inference in other exoplanet systems, follows on from the process of star formation and accretion disk formation, through the agglomeration of residual material as the protoplanetary disk collapses and evolves

251 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Spitzer Space Telescope (HST) spectroscopic phase curve results of WASP-43b to obtain a precise dayside hemisphere H2O abundance and derived a corresponding metallicity estimate that is consistent with being solar.
Abstract: Previous measurements of heat redistribution efficiency (the ability to transport energy from a planet's highly irradiated dayside to its eternally dark nightside) show considerable variation between exoplanets. Theoretical models predict a positive correlation between heat redistribution efficiency and temperature for tidally locked planets; however, recent Hubble Space Telescope (HST) WASP-43b spectroscopic phase curve results are inconsistent with current predictions. Using the Spitzer Space Telescope, we obtained a total of three phase curve observations of WASP-43b (P = 0.813 days) at 3.6 and 4.5 μm. The first 3.6 μm visit exhibits spurious nightside emission that requires invoking unphysical conditions in our cloud-free atmospheric retrievals. The two other visits exhibit strong day–night contrasts that are consistent with the HST data. To reconcile the departure from theoretical predictions, WASP-43b would need to have a high-altitude, nightside cloud/haze layer blocking its thermal emission. Clouds/hazes could be produced within the planet's cool, nearly retrograde mid-latitude flows before dispersing across its nightside at high altitudes. Since mid-latitude flows only materialize in fast-rotating ($\lesssim 1$ day) planets, this may explain an observed trend connecting measured day–night contrast with planet rotation rate that matches all current Spitzer phase curve results. Combining independent planetary emission measurements from multiple phases, we obtain a precise dayside hemisphere H2O abundance ($2.5\times {10}^{-5}\mbox{--}1.1\times {10}^{-4}$ at 1σ confidence) and, assuming chemical equilibrium and a scaled solar abundance pattern, we derive a corresponding metallicity estimate that is consistent with being solar (0.4–1.7). Using the retrieved global CO+CO2 abundance under the same assumptions, we estimate a comparable metallicity of 0.3–1.7× solar. This is the first time that precise abundance and metallicity constraints have been determined from multiple molecular tracers for a transiting exoplanet.

183 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Spitzer Space Telescope to obtain a total of three phase curve observations of WASP-43b (P=0.813 days) at 3.6 and 4.5 microns.
Abstract: Previous measurements of heat redistribution efficiency (the ability to transport energy from a planet's highly irradiated dayside to its eternally dark nightside) show considerable variation between exoplanets. Theoretical models predict a positive correlation between heat redistribution efficiency and temperature for tidally locked planets; however, recent HST WASP-43b spectroscopic phase curve results are inconsistent with current predictions. Using the Spitzer Space Telescope, we obtained a total of three phase curve observations of WASP-43b (P=0.813 days) at 3.6 and 4.5 microns. The first 3.6 micron visit exhibits spurious nightside emission that requires invoking unphysical conditions in our cloud-free atmospheric retrievals. The two other visits exhibit strong day-night contrasts that are consistent with the HST data. To reconcile the departure from theoretical predictions, WASP-43b would need to have a high-altitude, nightside cloud/haze layer blocking its thermal emission. Clouds/hazes could be produced within the planet's cool, nearly retrograde mid-latitude flows before dispersing across its nightside at high altitudes. Since mid-latitude flows only materialize in fast-rotating ($\lesssim1$ day) planets, this may explain an observed trend connecting measured day-night contrast with planet rotation rate that matches all current Spitzer phase curve results. Combining independent planetary emission measurements from multiple phases, we obtain a precise dayside hemisphere H2O abundance ($2.5\times 10^{-5} - 1.1\times 10^{-4}$ at 1$\sigma$ confidence) and, assuming chemical equilibrium and a scaled solar abundance pattern, we derive a corresponding metallicity estimate that is consistent with being solar (0.4 -- 1.7). Using the retrieved global CO+CO2 abundance under the same assumptions, we estimate a comparable metallicity of 0.3 - 1.7$\times$ solar. (Abridged)

174 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, exact analytic formulae for the eclipse of a star described by quadratic or nonlinear limb darkening are presented for the HST observations of HD 209458, showing that the ratio of the planetary to stellar radii is 0.1207+-0.0003.
Abstract: We present exact analytic formulae for the eclipse of a star described by quadratic or nonlinear limb darkening. In the limit that the planet radius is less than a tenth of the stellar radius, we show that the exact lightcurve can be well approximated by assuming the region of the star blocked by the planet has constant surface brightness. We apply these results to the HST observations of HD 209458, showing that the ratio of the planetary to stellar radii is 0.1207+-0.0003. These formulae give a fast and accurate means of computing lightcurves using limb-darkening coefficients from model atmospheres which should aid in the detection, simulation, and parameter fitting of planetary transits.

2,370 citations

Journal ArticleDOI
TL;DR: In this paper, the exact analytic formulae for the eclipse of a star described by quadratic or nonlinear limb darkening were presented, and the authors applied these results to the Hubble Space Telescope observations of HD 209458, showing that the ratio of the planetary to stellar radii is 0.1207 ± 0.0003.
Abstract: We present exact analytic formulae for the eclipse of a star described by quadratic or nonlinear limb darkening. In the limit that the planet radius is less than a tenth of the stellar radius, we show that the exact light curve can be well approximated by assuming the region of the star blocked by the planet has constant surface brightness. We apply these results to the Hubble Space Telescope observations of HD 209458, showing that the ratio of the planetary to stellar radii is 0.1207 ± 0.0003. These formulae give a fast and accurate means of computing light curves using limb-darkening coefficients from model atmospheres that should aid in the detection, simulation, and parameter fitting of planetary transits.

2,253 citations

Journal ArticleDOI
TL;DR: High-precision, high-cadence photometric measurements of the star HD 209458 are reported, which is known from radial velocity measurements to have a planetary-mass companion in a close orbit and the detailed shape of the transit curve due to both the limb darkening of thestar and the finite size of the planet is clearly evident.
Abstract: We report high-precision, high-cadence photometric measurements of the star HD 209458, which is known from radial velocity measurements to have a planetary-mass companion in a close orbit. We detect two separate transit events at times that are consistent with the radial velocity measurements. In both cases, the detailed shape of the transit curve due to both the limb darkening of the star and the finite size of the planet is clearly evident. Assuming stellar parameters of 1.1 R⊙ and 1.1 M⊙, we find that the data are best interpreted as a gas giant with a radius of 1.27 ± 0.02 RJup in an orbit with an inclination of 871 ± 02. We present values for the planetary surface gravity, escape velocity, and average density and discuss the numerous observations that are warranted now that a planet is known to transit the disk of its parent star.

1,494 citations

Journal ArticleDOI
TL;DR: Doppler measurements from Keck exhibit a sinusoidal periodicity in the velocities of the G0 dwarf HD 209458, having a semiamplitude of 81 m s-1 and a period of 3.5239 days, which is indicative of a "51 Peg-like" planet with a minimum mass (Msini) of 0.62 MJup and a semimajor axis of0.046 AU.
Abstract: Doppler measurements from Keck exhibit a sinusoidal periodicity in the velocities of the G0 dwarf HD 209458, having a semiamplitude of 81 m s 21 and a period of 3.5239 days, which is indicative of a “51 Peg‐like” planet with a minimum mass ( ) of 0.62 MJup and a semimajor axis of 0.046 AU. Follow-up photometry reveals M sin i a drop of 0.017 mag at the predicted time (within the errors) of transit by the companion based on the velocities. This is the first extrasolar planet observed to transit its star. The radius of the planet derived from the magnitude of the dimming is 1.42 RJup, which is consistent with models of irradiated Jupiter-mass planets. The transit implies that , leading to a true mass of 0.62 MJup for the planet. The resulting mean density of 0.27 g cm 23 sin i 1 0.993 implies that the companion is a gas giant. Subject headings: planetary systems — stars: individual (HD 209458)

940 citations

Journal ArticleDOI
25 Feb 2005-Science
TL;DR: This work shows that timing measurements between successive transits will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet.
Abstract: Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations.

799 citations