scispace - formally typeset
Open AccessJournal ArticleDOI

Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis

Reads0
Chats0
TLDR
The data indicate that the size itself of (ligand-devoid) particles can determine the pathway of entry in non-phagocytic B16 cells, and kinetic parameters may determine the almost exclusive internalization of such particles along this pathway rather than via caveolae.
Abstract
Non-phagocytic eukaryotic cells can internalize particles <1 microm in size, encompassing pathogens, liposomes for drug delivery or lipoplexes applied in gene delivery. In the present study, we have investigated the effect of particle size on the pathway of entry and subsequent intracellular fate in non-phagocytic B16 cells, using a range of fluorescent latex beads of defined sizes (50-1000 nm). Our data reveal that particles as large as 500 nm were internalized by cells via an energy-dependent process. With an increase in size (50-500 nm), cholesterol depletion increased the efficiency of inhibition of uptake. The processing of the smaller particles was significantly perturbed upon microtubule disruption, while displaying a negligible effect on that of the 500 nm beads. Inhibitor and co-localization studies revealed that the mechanism by which the beads were internalized, and their subsequent intracellular routing, was strongly dependent on particle size. Internalization of microspheres with a diameter <200 nm involved clathrin-coated pits. With increasing size, a shift to a mechanism that relied on caveolae-mediated internalization became apparent, which became the predominant pathway of entry for particles of 500 nm in size. At these conditions, delivery to the lysosomes was no longer apparent. The data indicate that the size itself of (ligand-devoid) particles can determine the pathway of entry. The clathrin-mediated pathway of endocytosis shows an upper size limit for internalization of approx. 200 nm, and kinetic parameters may determine the almost exclusive internalization of such particles along this pathway rather than via caveolae.

read more

Citations
More filters
Journal ArticleDOI

Toxic Potential of Materials at the Nanolevel

TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Journal ArticleDOI

Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles

TL;DR: Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices.
Journal ArticleDOI

Understanding biophysicochemical interactions at the nano–bio interface

TL;DR: Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Journal ArticleDOI

Strategies in the design of nanoparticles for therapeutic applications

TL;DR: This Review focuses on recent progress important for the rational design of such nanoparticles and discusses the challenges to realizing the potential of nanoparticles.
Journal ArticleDOI

Delivering nanomedicine to solid tumors

TL;DR: In this paper, the authors review the barriers to the delivery of cancer therapeutics and summarize strategies that have been developed to overcome these barriers and discuss design considerations for optimizing the nanoparticles to tumors.
References
More filters
Journal ArticleDOI

Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure

TL;DR: Depending upon the cell line, lipofection is from 5- to greater than 100-fold more effective than either the calcium phosphate or the DEAE-dextran transfection technique.
Journal ArticleDOI

Caveolin, a protein component of caveolae membrane coats.

TL;DR: Structural analysis of the striated coat of caveolae reveals a third type of coated membrane specialization that is involved in molecular transport and is named caveolin, suggesting that this molecule is a component of the coat.
Journal ArticleDOI

Cellular and Molecular Barriers to Gene Transfer by a Cationic Lipid

TL;DR: The results indicate that endocytosis was the major mechanism of entry in cationic lipid-mediated gene transfer and suggest that attention to specific steps in the cellular process may further improve the efficiency of transfection and increase its use in a number of applications.
Journal ArticleDOI

Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection.

TL;DR: It is proposed that after the cationic lipid/DNA complex is internalized into cells by endocytosis it destabilization induces flip-flop of anionic lipids from the cytoplasmic-facing monolayer, which laterally diffuse into the complex and form a charge neutral ion pair with the cationsic lipids.
Journal ArticleDOI

Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation.

TL;DR: It is concluded that cells have a mechanism for switching on and off AP-2 binding during the endocytic cycle, which is revealed by the cationic amphiphilic class of drugs (CAD), which have previously been found to inhibit receptor recycling.
Related Papers (5)