scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Skeletal Muscle in ALS: An Unappreciated Therapeutic Opportunity?

TL;DR: In this article, the authors review clinical and preclinical studies that targeted skeletal muscles and discuss the different approaches, including pharmacological interventions, supplements or diets, genetic modifications, and training programs.
Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the selective degeneration of upper and lower motor neurons and by the progressive weakness and paralysis of voluntary muscles. Despite intense research efforts and numerous clinical trials, it is still an incurable disease. ALS had long been considered a pure motor neuron disease; however, recent studies have shown that motor neuron protection is not sufficient to prevent the course of the disease since the dismantlement of neuromuscular junctions occurs before motor neuron degeneration. Skeletal muscle alterations have been described in the early stages of the disease, and they seem to be mainly involved in the “dying back” phenomenon of motor neurons and metabolic dysfunctions. In recent years, skeletal muscles have been considered crucial not only for the etiology of ALS but also for its treatment. Here, we review clinical and preclinical studies that targeted skeletal muscles and discuss the different approaches, including pharmacological interventions, supplements or diets, genetic modifications, and training programs.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates is presented.
Abstract: Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable β-sheet enriched intermediates, which are stabilized by intermolecular interactions with other β-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.

23 citations

Journal ArticleDOI
TL;DR:
Abstract: Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.

21 citations

Journal ArticleDOI
16 Sep 2021-Cells
TL;DR: In this article, the authors focus on the common overlapping mechanisms leading to disease pathology despite these different molecular players and discuss how this convergence may occur, with the ultimate hope that therapies effective in one disease may successfully translate to another.
Abstract: Multiple neurodegenerative diseases (NDDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) are being suggested to have common cellular and molecular pathological mechanisms, characterized mainly by protein misfolding and aggregation. These large inclusions, most likely, represent an end stage of a molecular cascade; however, the soluble misfolded proteins, which take part in earlier steps of this cascade, are the more toxic players. These pathological proteins, which characterize each specific disease, lead to the selective vulnerability of different neurons, likely resulting from a combination of different intracellular mechanisms, including mitochondrial dysfunction, ER stress, proteasome inhibition, excitotoxicity, oxidative damage, defects in nucleocytoplasmic transport, defective axonal transport and neuroinflammation. Damage within these neurons is enhanced by damage from the nonneuronal cells, via inflammatory processes that accelerate the progression of these diseases. In this review, while acknowledging the hallmark proteins which characterize the most common NDDs; we place specific focus on the common overlapping mechanisms leading to disease pathology despite these different molecular players and discuss how this convergence may occur, with the ultimate hope that therapies effective in one disease may successfully translate to another.

15 citations

Journal ArticleDOI
T G Sahana1, Ke Zhang1
TL;DR: The mitogen-activated protein kinase (MAPK) pathway is a fundamental mitogen/stress-activated signal transduction pathway that regulates cell proliferation, differentiation, survival, and death as discussed by the authors.
Abstract: Amyotrophic lateral sclerosis is a fatal motor neuron degenerative disease. Multiple genetic and non-genetic risk factors are associated with disease pathogenesis, and several cellular processes, including protein homeostasis, RNA metabolism, vesicle transport, etc., are severely impaired in ALS conditions. Despite the heterogeneity of the disease manifestation and progression, ALS patients show protein aggregates in the motor cortex and spinal cord tissue, which is believed to be at least partially caused by aberrant phase separation and the formation of persistent stress granules. Consistent with this notion, many studies have implicated cellular stress, such as ER stress, DNA damage, oxidative stress, and growth factor depletion, in ALS conditions. The mitogen-activated protein kinase (MAPK) pathway is a fundamental mitogen/stress-activated signal transduction pathway that regulates cell proliferation, differentiation, survival, and death. Here we summarize the fundamental role of MAPK in physiology and ALS pathogenesis. We also discuss pharmacological inhibitors targeting this pathway tested in pre-clinical models, suggesting their role as potential drug candidates.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an updated and comprehensive review of how eukaryotic unicellular and multicellular organisms that reproduce a few of the main clinical features of ALS have helped in ALS research to dissect the pathological pathways of the disease insurgence and progression.
Abstract: Over the years, researchers have leveraged a host of different in vivo models in order to dissect amyotrophic lateral sclerosis (ALS), a neurodegenerative/neuroinflammatory disease that is heterogeneous in its clinical presentation and is multigenic, multifactorial and non-cell autonomous. These models include both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs and, more recently, non-human primates. Despite their obvious differences and peculiarities, only the concurrent and comparative analysis of these various systems will allow the untangling of the causes and mechanisms of ALS for finally obtaining new efficacious therapeutics. However, harnessing these powerful organisms poses numerous challenges. In this context, we present here an updated and comprehensive review of how eukaryotic unicellular and multicellular organisms that reproduce a few of the main clinical features of the disease have helped in ALS research to dissect the pathological pathways of the disease insurgence and progression. We describe common features as well as discrepancies among these models, highlighting new insights and emerging roles for experimental organisms in ALS.

14 citations

References
More filters
Journal ArticleDOI
17 Jun 1994-Science
TL;DR: In this article, the authors found that mutations of human Cu,Zn superoxide dismutase (SOD) contribute to the pathogenesis of familial amyotrophic lateral sclerosis (ALS).
Abstract: Mutations of human Cu,Zn superoxide dismutase (SOD) are found in about 20 percent of patients with familial amyotrophic lateral sclerosis (ALS). Expression of high levels of human SOD containing a substitution of glycine to alanine at position 93--a change that has little effect on enzyme activity--caused motor neuron disease in transgenic mice. The mice became paralyzed in one or more limbs as a result of motor neuron loss from the spinal cord and died by 5 to 6 months of age. The results show that dominant, gain-of-function mutations in SOD contribute to the pathogenesis of familial ALS.

3,958 citations

Journal ArticleDOI
21 May 1993-Science
TL;DR: In embryonic midbrain cultures, recombinant human GDNF promoted the survival and morphological differentiation of dopaminergic neurons and increased their high-affinity dopamine uptake and did not increase total neuron or astrocyte numbers or transmitter uptake.
Abstract: A potent neurotrophic factor that enhances survival of midbrain dopaminergic neurons was purified and cloned. Glial cell line-derived neurotrophic factor (GDNF) is a glycosylated, disulfide-bonded homodimer that is a distantly related member of the transforming growth factor-beta superfamily. In embryonic midbrain cultures, recombinant human GDNF promoted the survival and morphological differentiation of dopaminergic neurons and increased their high-affinity dopamine uptake. These effects were relatively specific; GDNF did not increase total neuron or astrocyte numbers nor did it increase transmitter uptake by gamma-aminobutyric-containing and serotonergic neurons. GDNF may have utility in the treatment of Parkinson's disease, which is marked by progressive degeneration of midbrain dopaminergic neurons.

3,236 citations

Journal ArticleDOI
TL;DR: This work has shown that the PGC-1 coactivators play a critical role in the maintenance of glucose, lipid, and energy homeostasis and are likely involved in the pathogenic conditions such as obesity, diabetes, neurodegeneration, and cardiomyopathy.

1,993 citations

Journal ArticleDOI
TL;DR: In patients with SMA1, a single intravenous infusion of adenoviral vector containing DNA coding for SMN resulted in longer survival, superior achievement of motor milestones, and better motor function than in historical cohorts.
Abstract: BackgroundSpinal muscular atrophy type 1 (SMA1) is a progressive, monogenic motor neuron disease with an onset during infancy that results in failure to achieve motor milestones and in death or the need for mechanical ventilation by 2 years of age. We studied functional replacement of the mutated gene encoding survival motor neuron 1 (SMN1) in this disease. MethodsFifteen patients with SMA1 received a single dose of intravenous adeno-associated virus serotype 9 carrying SMN complementary DNA encoding the missing SMN protein. Three of the patients received a low dose (6.7×1013 vg per kilogram of body weight), and 12 received a high dose (2.0×1014 vg per kilogram). The primary outcome was safety. The secondary outcome was the time until death or the need for permanent ventilatory assistance. In exploratory analyses, we compared scores on the CHOP INTEND (Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders) scale of motor function (ranging from 0 to 64, with higher scores indicating be...

1,414 citations

Journal ArticleDOI
Richard S. Finkel1, Eugenio Mercuri2, Basil T. Darras3, Anne M. Connolly4  +394 moreInstitutions (13)
TL;DR: Those who received nusinersen were more likely to be alive and have improvements in motor function than those in the control group and infants with a shorter disease duration at screening wereMore likely than those with a longer disease duration to benefit from nusineren.
Abstract: BackgroundSpinal muscular atrophy is an autosomal recessive neuromuscular disorder that is caused by an insufficient level of survival motor neuron (SMN) protein. Nusinersen is an antisense oligonu...

1,342 citations