scispace - formally typeset
Journal ArticleDOI

Slender-body theory for particles of arbitrary cross-section in Stokes flow

G. K. Batchelor
- 26 Nov 1970 - 
- Vol. 44, Iss: 03, pp 419-440
Reads0
Chats0
TLDR
In this article, the Stokeslet strength density of a rigid body is estimated to be independent of the body shape and is of order μUe, where U is a measure of the undisturbed velocity and e = (log 2l/R0)−1.
Abstract
A rigid body whose length (2l) is large compared with its breadth (represented by R0) is straight but is otherwise of arbitrary shape. It is immersed in fluid whose undisturbed velocity, at the position of the body and relative to it, may be either uniform, corresponding to translational motion of the body, parallel or perpendicular to the body length, or a linear function of distance along the body length, corresponding to an ambient pure straining motion or to rotational motion of the body. Inertia forces are negligible. It is possible to represent the body approximately by a distribution of Stokeslets over a line enclosed by the body; and then the resultant force required to sustain translational motion, the net stresslet strength in a straining motion, and the resultant couple required to sustain rotational motion, can all be calculated. In the first approximation the Stokeslet strength density F(x) is independent of the body shape and is of order μUe, where U is a measure of the undisturbed velocity and e = (log 2l/R0)−1. In higher approximations, F(x) depends on both the body cross-section and the way in which it varies along the length. From an investigation of the ‘inner’ flow field near one section of the body, and the condition that it should join smoothly with the ‘outer’ flow which is determined by the body as a whole, it is found that a given shape and size of the local cross-section is equivalent, in all cases of longitudinal relative motion, to a circle of certain radius, and, in all cases of transverse relative motion, to an ellipse of certain dimensions and orientation. The equivalent circle and the equivalent ellipse may be found from certain boundary-value problems for the harmonic and biharmonic equations respectively. The perimeter usually provides a better measure of the magnitude of the effect of a non-circular shape of a cross-section than its area. Explicit expressions for the various integral force parameters correct to the order of e2 are presented, together with iterative relations which allow their determination to the order of any power of e. For a body which is ‘longitudinally elliptic’ and has uniform cross-sectional shape, the force parameters are given explicitly to the order of any power of e, and, for a cylindrical body, to the order of e3.

read more

Citations
More filters
Journal ArticleDOI

The hydrodynamics of swimming microorganisms

TL;DR: The biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below are reviewed, with emphasis on the simple physical picture and fundamental flow physics phenomena in this regime.
Journal ArticleDOI

Collective Motion

TL;DR: In this paper, the basic laws describing the essential aspects of collective motion are reviewed and a discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, are provided.
Journal ArticleDOI

Fluid Mechanics of Propulsion by Cilia and Flagella

TL;DR: This review restricts this review primarily to a summary of present understanding of the low-Reynolds-number flows associated with microorganism propulsion and the hydromechanics of ciliary systems.
MonographDOI

Colloidal Suspension Rheology

TL;DR: In this paper, the authors introduce colloid science and rheology, and present an overview of colloid physics and its applications in viscoelastic media. But they do not discuss the role of non-spherical particles.
Journal ArticleDOI

The stress generated in a non-dilute suspension of elongated particles by pure straining motion

TL;DR: In this article, the authors investigated the effect of interactions between rigid particles in a dilute suspension and showed that the contribution of particles to the bulk stress due to the interactions between them is relatively large, for volume fractions which are still small.
References
More filters
Book

Low Reynolds number hydrodynamics

TL;DR: Low Reynolds number flow theory finds wide application in such diverse fields as sedimentation, fluidization, particle-size classification, dust and mist collection, filtration, centrifugation, polymer and suspension rheology, and a host of other disciplines.
Journal ArticleDOI

The motion of ellipsoidal particles immersed in a viscous fluid

TL;DR: In this article, the authors considered the case of particles of ellipsoidal shape, and showed that the condition for the validity of this approximation is that the product of the velocity of the ellipssoid by its linear dimensions shall be small compared with the "kinematic coefficient, of viscosity" of the fluid.
Journal ArticleDOI

The stress system in a suspension of force-free particles

TL;DR: In this paper, the authors consider the properties of the bulk stress in a suspension of non-spherical particles, on which a couple (but no force) may be imposed by external means, immersed in a Newtonian fluid.
Journal ArticleDOI

The motion of long slender bodies in a viscous fluid Part 1. General theory

TL;DR: In this paper, a solid long slender body is placed in a fluid undergoing a given undisturbed flow, and the force per unit length on the body is obtained as an asymptotic expansion in terms of the ratio of the cross-sectional radius to body length.