scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide

TL;DR: In this article, the authors measured emissions from nine ponds and seven ditches over a full year and found that the concentrations of GHGs were positively related to nutrient status (C, N, P), and ponds GHG concentrations were highest in smallest waterbodies.
Abstract: Inland waters play an active role in the global carbon cycle and emit large volumes of the greenhouse gases (GHGs) methane (CH ) and carbon dioxide (CO ). A considerable body of research has improved emissions estimates from lakes, reservoirs, and rivers but recent attention has been drawn to the importance of small, artificial waterbodies as poorly quantified but potentially important emission hotspots. Of particular interest are emissions from drainage ditches and constructed ponds. These waterbody types are prevalent in many landscapes and their cumulative surface areas can be substantial. Furthermore, GHG emissions from constructed waterbodies are anthropogenic in origin and form part of national emissions reporting, whereas emissions from natural water bodies do not (according to Intergovernmental Panel on Climate Change guidelines). Here, we present GHG data from two complementary studies covering a range of land uses. In the first, we measured emissions from nine ponds and seven ditches over a full year. Annual emissions varied considerably: 0.1 - 44.3 g CH m yr and -36 - 4421 g CO m yr . In the second, we measured GHG concentrations in 96 ponds and 64 ditches across seven countries, covering subtropical, temperate and sub-arctic biomes. When CH emissions were converted to CO equivalents, 93% of waterbodies were GHG sources. In both studies, GHGs were positively related to nutrient status (C, N, P), and pond GHG concentrations were highest in smallest waterbodies. Ditch and pond emissions were larger per unit area when compared to equivalent natural systems (streams, natural ponds). We show that GHG emissions from natural systems should not be used as proxies for those from artificial waterbodies, and that artificial waterbodies have the potential to make a substantial but largely unquantified contribution to emissions from the Agriculture, Forestry and Other Land Use sector, and the global carbon cycle.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors summarized advances in the theoretical framework and empirical research on this issue and analyzed the current understanding of the major drivers and mechanisms by which climate change can enhance eutrophication, and vice versa, with a particular focus on shallow lakes.
Abstract: ABSTRACT Despite its well-established negative impacts on society and biodiversity, eutrophication continues to be one of the most pervasive anthropogenic influences along the freshwater to marine continuum. The interaction between eutrophication and climate change, particularly climate warming, was explicitly focused upon a decade ago by Brian Moss and others in “Allied attack: climate change and eutrophication,” which called for an integrated response to both problems, given their apparent synergy. In this review, we summarise advances in the theoretical framework and empirical research on this issue and analyse the current understanding of the major drivers and mechanisms by which climate change can enhance eutrophication, and vice versa, with a particular focus on shallow lakes. Climate change can affect nutrient loading through changes at the catchment and landscape levels by affecting hydrological patterns and fire frequency and through temperature effects on nutrient cycling. Biotic communities and their interactions can also be directly and indirectly affected by climate change, leading to an overall weakening of resilience to eutrophication impacts. Increasing empirical evidence now indicates several mechanisms by which eutrophying aquatic systems can increasingly act as important sources of greenhouse gases to the atmosphere, particularly methane. We also highlight potential feedback among eutrophication, cyanobacterial blooms, and climate change. Facing both challenges simultaneously is more pressing than ever. Meaningful and strong measures at the landscape and waterbody levels are therefore required if we are to ensure ecosystem resilience and safe water supply, conserve biodiversity, and decrease the carbon footprint of freshwaters.

23 citations

Journal ArticleDOI
19 Mar 2022-Water
TL;DR: In this article , a detailed analysis of the GHG emissions mechanisms, processes, and methods of measurement from ponds is presented, and key factors affecting the emissions rate are discussed, including temperature, nutrients, pH, dissolved oxygen, sediments, water depth, etc.
Abstract: Inland water bodies (particularly ponds) emit a significant amount of greenhouse gases (GHGs), particularly methane (CH4), carbon dioxide (CO2), and a comparatively low amount of nitrous oxide (N2O) to the atmosphere. In recent decades, ponds (<10,000 m2) probably account for about 1/3rd of the global lake perimeter and are considered a hotspot of GHG emissions. High nutrients and waterlogged conditions provide an ideal environment for CH4 production and emission. The rate of emissions differs according to climatic regions and is influenced by several biotic and abiotic factors, such as temperature, nutrients (C, N, & P), pH, dissolved oxygen, sediments, water depth, etc. Moreover, micro and macro planktons play a significant role in CO2 and CH4 emissions from ponds systems. Generally, in freshwater bodies, the produced N2O diffuses in the water and is converted into N2 gas through different biological processes. There are several other factors and mechanisms which significantly affect the CH4 and CO2 emission rate from ponds and need a comprehensive evaluation. This study aims to develop a decisive understanding of GHG emissions mechanisms, processes, and methods of measurement from ponds. Key factors affecting the emissions rate will also be discussed. This review will be highly useful for the environmentalists, policymakers, and water resources planners and managers to take suitable mitigation measures in advance so that the climatic impact could be reduced in the future.

17 citations

Journal ArticleDOI
TL;DR: A statistical analysis of the data together with the published flux data reveals that ponds with dredging have much lower CH4 emission flux than those without dredging and suggests that dredging may have a much larger influence on the emission flux more than aeration.

15 citations

Journal ArticleDOI
TL;DR: In this paper , the authors present a new global dataset that contains the location and surface area variations of 681,137 lakes and reservoirs larger than 0.1 square kilometers (and south of 50 degree N).
Abstract: Lakes and reservoirs, as most humans experience and use them, are dynamic bodies of water, with surface extents that increase and decrease with seasonal precipitation patterns, long-term changes in climate, and human management decisions. This paper presents a new global dataset that contains the location and surface area variations of 681,137 lakes and reservoirs larger than 0.1 square kilometers (and south of 50 degree N) from 1984 to 2015, to enable the study of the impact of human actions and climate change on freshwater availability. Within its scope for size and region covered, this dataset is far more comprehensive than existing datasets such as HydroLakes. While HydroLAKES only provides a static shape, the proposed dataset also has a timeseries of surface area and a shapefile containing monthly shapes for each lake. The paper presents the development and evaluation of this dataset and highlights the utility of novel machine learning techniques in addressing the inherent challenges in transforming satellite imagery to dynamic global surface water maps.

9 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper analyzed the literature data on CO 2 and CH 4 fluxes from various aquaculture systems in China, and found that small and shallow systems had significantly higher emissions, with chlorophyll a and dissolved oxygen concentrations as the main environmental drivers.

9 citations

References
More filters
Book
01 Dec 1969
TL;DR: The concepts of power analysis are discussed in this paper, where Chi-square Tests for Goodness of Fit and Contingency Tables, t-Test for Means, and Sign Test are used.
Abstract: Contents: Prefaces. The Concepts of Power Analysis. The t-Test for Means. The Significance of a Product Moment rs (subscript s). Differences Between Correlation Coefficients. The Test That a Proportion is .50 and the Sign Test. Differences Between Proportions. Chi-Square Tests for Goodness of Fit and Contingency Tables. The Analysis of Variance and Covariance. Multiple Regression and Correlation Analysis. Set Correlation and Multivariate Methods. Some Issues in Power Analysis. Computational Procedures.

115,069 citations

Journal ArticleDOI
TL;DR: In this paper, a different approach to problems of multiple significance testing is presented, which calls for controlling the expected proportion of falsely rejected hypotheses -the false discovery rate, which is equivalent to the FWER when all hypotheses are true but is smaller otherwise.
Abstract: SUMMARY The common approach to the multiplicity problem calls for controlling the familywise error rate (FWER). This approach, though, has faults, and we point out a few. A different approach to problems of multiple significance testing is presented. It calls for controlling the expected proportion of falsely rejected hypotheses -the false discovery rate. This error rate is equivalent to the FWER when all hypotheses are true but is smaller otherwise. Therefore, in problems where the control of the false discovery rate rather than that of the FWER is desired, there is potential for a gain in power. A simple sequential Bonferronitype procedure is proved to control the false discovery rate for independent test statistics, and a simulation study shows that the gain in power is substantial. The use of the new procedure and the appropriateness of the criterion are illustrated with examples.

83,420 citations

BookDOI
01 Dec 2010
TL;DR: A guide to using S environments to perform statistical analyses providing both an introduction to the use of S and a course in modern statistical methods.
Abstract: A guide to using S environments to perform statistical analyses providing both an introduction to the use of S and a course in modern statistical methods The emphasis is on presenting practical problems and full analyses of real data sets

18,346 citations

Journal ArticleDOI
TL;DR: Data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments and is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems.
Abstract: Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetra- methylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements.

3,618 citations

Journal ArticleDOI
TL;DR: In this paper, the role of inland water ecosystems in the global carbon cycle has been investigated and it is shown that roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea, roughly equally as inorganic and organic carbon.
Abstract: Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y−1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y−1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described.

3,179 citations