scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

SmartBox: Benchmarking Adversarial Detection and Mitigation Algorithms for Face Recognition

01 Oct 2018-pp 1-7
TL;DR: SmartBox is a python based toolbox which provides an open source implementation of adversarial detection and mitigation algorithms against face recognition and provides a platform to evaluate newer attacks, detection models, and mitigation approaches on a common face recognition benchmark.
Abstract: Deep learning models are widely used for various purposes such as face recognition and speech recognition. However, researchers have shown that these models are vulnerable to adversarial attacks. These attacks compute perturbations to generate images that decrease the performance of deep learning models. In this research, we have developed a toolbox, termed as SmartBox, for benchmarking the performance of adversarial attack detection and mitigation algorithms against face recognition. SmartBox is a python based toolbox which provides an open source implementation of adversarial detection and mitigation algorithms. In this research, Extended Yale Face Database B has been used for generating adversarial examples using various attack algorithms such as DeepFool, Gradient methods, Elastic-Net, and $L_{2}$ attack. SmartBox provides a platform to evaluate newer attacks, detection models, and mitigation approaches on a common face recognition benchmark. To assist the research community, the code of SmartBox is made available11http://iab-rubric.org/resources/SmartBox.html.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the recent developments on deep face recognition can be found in this paper, covering broad topics on algorithm designs, databases, protocols, and application scenes, as well as the technical challenges and several promising directions.

353 citations

Journal ArticleDOI
TL;DR: This paper attempts to unravel three aspects related to the robustness of DNNs for face recognition in terms of vulnerabilities to attacks, detecting the singularities by characterizing abnormal filter response behavior in the hidden layers of deep networks; and making corrections to the processing pipeline to alleviate the problem.
Abstract: Deep neural network (DNN) architecture based models have high expressive power and learning capacity. However, they are essentially a black box method since it is not easy to mathematically formulate the functions that are learned within its many layers of representation. Realizing this, many researchers have started to design methods to exploit the drawbacks of deep learning based algorithms questioning their robustness and exposing their singularities. In this paper, we attempt to unravel three aspects related to the robustness of DNNs for face recognition: (i) assessing the impact of deep architectures for face recognition in terms of vulnerabilities to attacks, (ii) detecting the singularities by characterizing abnormal filter response behavior in the hidden layers of deep networks; and (iii) making corrections to the processing pipeline to alleviate the problem. Our experimental evaluation using multiple open-source DNN-based face recognition networks, and three publicly available face databases demonstrates that the performance of deep learning based face recognition algorithms can suffer greatly in the presence of such distortions. We also evaluate the proposed approaches on four existing quasi-imperceptible distortions: DeepFool, Universal adversarial perturbations, $$l_2$$ , and Elastic-Net (EAD). The proposed method is able to detect both types of attacks with very high accuracy by suitably designing a classifier using the response of the hidden layers in the network. Finally, we present effective countermeasures to mitigate the impact of adversarial attacks and improve the overall robustness of DNN-based face recognition.

98 citations


Cites methods from "SmartBox: Benchmarking Adversarial ..."

  • ...Recently, Goel et al. (2018) have prepared the SmartBox toolbox containing several existing adversarial generation, detection, and mitigation algorithms....

    [...]

Proceedings ArticleDOI
01 Jan 2019
TL;DR: A fast landmark manipulation method for generating adversarial faces is proposed, which is approximately 200 times faster than the previous geometric attacks and obtains 99.86% success rate on the state-of-the-art face recognition models.
Abstract: The state-of-the-art performance of deep learning algorithms has led to a considerable increase in the utilization of machine learning in security-sensitive and critical applications. However, it has recently been shown that a small and carefully crafted perturbation in the input space can completely fool a deep model. In this study, we explore the extent to which face recognition systems are vulnerable to geometrically-perturbed adversarial faces. We propose a fast landmark manipulation method for generating adversarial faces, which is approximately 200 times faster than the previous geometric attacks and obtains 99.86% success rate on the state-of-the-art face recognition models. To further force the generated samples to be natural, we introduce a second attack constrained on the semantic structure of the face which has the half speed of the first attack with the success rate of 99.96%. Both attacks are extremely robust against the state-of-the-art defense methods with the success rate of equal or greater than 53.59%. Code is available at https://github.com/alldbi/FLM

63 citations


Cites background from "SmartBox: Benchmarking Adversarial ..."

  • ...However, the noisy structure of the perturbation makes these attacks vulnerable against conventional defense methods such as quantizing [18], smoothing [6] or training on adversarial examples [30]....

    [...]

Proceedings ArticleDOI
01 Oct 2018
TL;DR: A simple but efficient approach based on pixel values and Principal Component Analysis as features coupled with a Support Vector Machine as the classifier, to detect image-agnostic universal perturbations.
Abstract: High performance of deep neural network based systems have attracted many applications in object recognition and face recognition. However, researchers have also demonstrated them to be highly sensitive to adversarial perturbation and hence, tend to be unreliable and lack robustness. While most of the research on adversarial perturbation focuses on image specific attacks, recently, image-agnostic Universal perturbations are proposed which learn the adversarial pattern over training distribution and have broader impact on real-world security applications. Such adversarial attacks can have compounding effect on face recognition where these visually imperceptible attacks can cause mismatches. To defend against adversarial attacks, sophisticated detection approaches are prevalent but most of the existing approaches do not focus on image-agnostic attacks. In this paper, we present a simple but efficient approach based on pixel values and Principal Component Analysis as features coupled with a Support Vector Machine as the classifier, to detect image-agnostic universal perturbations. We also present evaluation metrics, namely adversarial perturbation class classification error rate, original class classification error rate, and average classification error rate, to estimate the performance of adversarial perturbation detection algorithms. The experimental results on multiple databases and different DNN architectures show that it is indeed not required to build complex detection algorithms; rather simpler approaches can yield higher detection rates and lower error rates for image agnostic adversarial perturbation.

54 citations


Cites background from "SmartBox: Benchmarking Adversarial ..."

  • ...[10] have developed a toolbox containing various algorithm corresponds to adversarial generation, detection, and mitigation....

    [...]

Journal ArticleDOI
03 Apr 2020
TL;DR: Different ways in which the robustness of a face recognition algorithm is challenged, which can severely affect its intended working are summarized.
Abstract: Face recognition algorithms have demonstrated very high recognition performance, suggesting suitability for real world applications Despite the enhanced accuracies, robustness of these algorithms against attacks and bias has been challenged This paper summarizes different ways in which the robustness of a face recognition algorithm is challenged, which can severely affect its intended working Different types of attacks such as physical presentation attacks, disguise/makeup, digital adversarial attacks, and morphing/tampering using GANs have been discussed We also present a discussion on the effect of bias on face recognition models and showcase that factors such as age and gender variations affect the performance of modern algorithms The paper also presents the potential reasons for these challenges and some of the future research directions for increasing the robustness of face recognition models

53 citations


Cites background or methods from "SmartBox: Benchmarking Adversarial ..."

  • ...Further, Goel et al. (2018) developed the first benchmark toolbox of algorithms for adversarial generation, detection, and mitigation for face recognition....

    [...]

  • ...t the attacks performed using image-agnostic perturbations (i.e., one noise across multiple images) can be detected using a computationally efficient algorithm based on the data distribution. Further, Goel et al. (2018) developed the first benchmark toolbox of algorithms for adversarial generation, detection, and mitigation for face recognition. Recently, Goel et al. (2019) presented one of the best security mechanis...

    [...]

References
More filters
Posted Content
TL;DR: This work proposes a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit and derives a robust initialization method that particularly considers the rectifier nonlinearities.
Abstract: Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on our PReLU networks (PReLU-nets), we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66%). To our knowledge, our result is the first to surpass human-level performance (5.1%, Russakovsky et al.) on this visual recognition challenge.

11,866 citations


"SmartBox: Benchmarking Adversarial ..." refers background in this paper

  • ...Deep learning models have achieved state-of-the-art performance in various computer vision related tasks such as object detection and face recognition [18, 24]....

    [...]

Proceedings ArticleDOI
07 Dec 2015
TL;DR: In this paper, a Parametric Rectified Linear Unit (PReLU) was proposed to improve model fitting with nearly zero extra computational cost and little overfitting risk, which achieved a 4.94% top-5 test error on ImageNet 2012 classification dataset.
Abstract: Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on the learnable activation and advanced initialization, we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66% [33]). To our knowledge, our result is the first to surpass the reported human-level performance (5.1%, [26]) on this dataset.

11,732 citations

Proceedings Article
01 Jan 2014
TL;DR: It is found that there is no distinction between individual highlevel units and random linear combinations of high level units, according to various methods of unit analysis, and it is suggested that it is the space, rather than the individual units, that contains of the semantic information in the high layers of neural networks.
Abstract: Deep neural networks are highly expressive models that have recently achieved state of the art performance on speech and visual recognition tasks. While their expressiveness is the reason they succeed, it also causes them to learn uninterpretable solutions that could have counter-intuitive properties. In this paper we report two such properties. First, we find that there is no distinction between individual high level units and random linear combinations of high level units, according to various methods of unit analysis. It suggests that it is the space, rather than the individual units, that contains of the semantic information in the high layers of neural networks. Second, we find that deep neural networks learn input-output mappings that are fairly discontinuous to a significant extend. We can cause the network to misclassify an image by applying a certain imperceptible perturbation, which is found by maximizing the network's prediction error. In addition, the specific nature of these perturbations is not a random artifact of learning: the same perturbation can cause a different network, that was trained on a different subset of the dataset, to misclassify the same input.

9,561 citations


"SmartBox: Benchmarking Adversarial ..." refers background or methods in this paper

  • ...Adversarial Training: In adversarial training [33], a new model is trained using the original dataset and adversarial examples with their correct labels....

    [...]

  • ...[33] Trains a new model on original and adversarial training images....

    [...]

Proceedings Article
20 Mar 2015
TL;DR: It is argued that the primary cause of neural networks' vulnerability to adversarial perturbation is their linear nature, supported by new quantitative results while giving the first explanation of the most intriguing fact about them: their generalization across architectures and training sets.
Abstract: Several machine learning models, including neural networks, consistently misclassify adversarial examples---inputs formed by applying small but intentionally worst-case perturbations to examples from the dataset, such that the perturbed input results in the model outputting an incorrect answer with high confidence. Early attempts at explaining this phenomenon focused on nonlinearity and overfitting. We argue instead that the primary cause of neural networks' vulnerability to adversarial perturbation is their linear nature. This explanation is supported by new quantitative results while giving the first explanation of the most intriguing fact about them: their generalization across architectures and training sets. Moreover, this view yields a simple and fast method of generating adversarial examples. Using this approach to provide examples for adversarial training, we reduce the test set error of a maxout network on the MNIST dataset.

7,994 citations


"SmartBox: Benchmarking Adversarial ..." refers background or methods in this paper

  • ...FGSM [15]: It computes the gradient of the loss function of the model concerning the image vector to get the direction of pixel change....

    [...]

  • ...[15] Computes gradient of the loss function w....

    [...]

  • ...While whitebox attacks such as ElasticNet (EAD) [6], DeepFool [28], L2 [5], Fast Gradient Sign Method (FGSM) [15], Projective Gradient Descent (PGD) [26], and MI-FGSM [10] have complete access and information about the trained network, blackbox attacks such as one pixel attack [32] and universal perturbations [27] have no information about the trained Deep Neural Network (DNN)....

    [...]

  • ...While whitebox attacks such as ElasticNet (EAD) [6], DeepFool [28], L2 [5], Fast Gradient Sign Method (FGSM) [15], Projective Gradient Descent (PGD) [26], and MI-FGSM [10] have complete access and information about the trained network, blackbox attacks such as one pixel attack [32] and universal perturbations [27]...

    [...]

  • ...FGSM perturbations can be computed by minimizing either the L1, L2 or L∞ norm....

    [...]

Proceedings ArticleDOI
22 May 2017
TL;DR: In this paper, the authors demonstrate that defensive distillation does not significantly increase the robustness of neural networks by introducing three new attack algorithms that are successful on both distilled and undistilled neural networks with 100% probability.
Abstract: Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples: given an input x and any target classification t, it is possible to find a new input x' that is similar to x but classified as t. This makes it difficult to apply neural networks in security-critical areas. Defensive distillation is a recently proposed approach that can take an arbitrary neural network, and increase its robustness, reducing the success rate of current attacks' ability to find adversarial examples from 95% to 0.5%.In this paper, we demonstrate that defensive distillation does not significantly increase the robustness of neural networks by introducing three new attack algorithms that are successful on both distilled and undistilled neural networks with 100% probability. Our attacks are tailored to three distance metrics used previously in the literature, and when compared to previous adversarial example generation algorithms, our attacks are often much more effective (and never worse). Furthermore, we propose using high-confidence adversarial examples in a simple transferability test we show can also be used to break defensive distillation. We hope our attacks will be used as a benchmark in future defense attempts to create neural networks that resist adversarial examples.

6,528 citations