scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

SmartBox: Benchmarking Adversarial Detection and Mitigation Algorithms for Face Recognition

01 Oct 2018-pp 1-7
TL;DR: SmartBox is a python based toolbox which provides an open source implementation of adversarial detection and mitigation algorithms against face recognition and provides a platform to evaluate newer attacks, detection models, and mitigation approaches on a common face recognition benchmark.
Abstract: Deep learning models are widely used for various purposes such as face recognition and speech recognition. However, researchers have shown that these models are vulnerable to adversarial attacks. These attacks compute perturbations to generate images that decrease the performance of deep learning models. In this research, we have developed a toolbox, termed as SmartBox, for benchmarking the performance of adversarial attack detection and mitigation algorithms against face recognition. SmartBox is a python based toolbox which provides an open source implementation of adversarial detection and mitigation algorithms. In this research, Extended Yale Face Database B has been used for generating adversarial examples using various attack algorithms such as DeepFool, Gradient methods, Elastic-Net, and $L_{2}$ attack. SmartBox provides a platform to evaluate newer attacks, detection models, and mitigation approaches on a common face recognition benchmark. To assist the research community, the code of SmartBox is made available11http://iab-rubric.org/resources/SmartBox.html.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the recent developments on deep face recognition can be found in this paper, covering broad topics on algorithm designs, databases, protocols, and application scenes, as well as the technical challenges and several promising directions.

353 citations

Journal ArticleDOI
TL;DR: This paper attempts to unravel three aspects related to the robustness of DNNs for face recognition in terms of vulnerabilities to attacks, detecting the singularities by characterizing abnormal filter response behavior in the hidden layers of deep networks; and making corrections to the processing pipeline to alleviate the problem.
Abstract: Deep neural network (DNN) architecture based models have high expressive power and learning capacity. However, they are essentially a black box method since it is not easy to mathematically formulate the functions that are learned within its many layers of representation. Realizing this, many researchers have started to design methods to exploit the drawbacks of deep learning based algorithms questioning their robustness and exposing their singularities. In this paper, we attempt to unravel three aspects related to the robustness of DNNs for face recognition: (i) assessing the impact of deep architectures for face recognition in terms of vulnerabilities to attacks, (ii) detecting the singularities by characterizing abnormal filter response behavior in the hidden layers of deep networks; and (iii) making corrections to the processing pipeline to alleviate the problem. Our experimental evaluation using multiple open-source DNN-based face recognition networks, and three publicly available face databases demonstrates that the performance of deep learning based face recognition algorithms can suffer greatly in the presence of such distortions. We also evaluate the proposed approaches on four existing quasi-imperceptible distortions: DeepFool, Universal adversarial perturbations, $$l_2$$ , and Elastic-Net (EAD). The proposed method is able to detect both types of attacks with very high accuracy by suitably designing a classifier using the response of the hidden layers in the network. Finally, we present effective countermeasures to mitigate the impact of adversarial attacks and improve the overall robustness of DNN-based face recognition.

98 citations


Cites methods from "SmartBox: Benchmarking Adversarial ..."

  • ...Recently, Goel et al. (2018) have prepared the SmartBox toolbox containing several existing adversarial generation, detection, and mitigation algorithms....

    [...]

Proceedings ArticleDOI
01 Jan 2019
TL;DR: A fast landmark manipulation method for generating adversarial faces is proposed, which is approximately 200 times faster than the previous geometric attacks and obtains 99.86% success rate on the state-of-the-art face recognition models.
Abstract: The state-of-the-art performance of deep learning algorithms has led to a considerable increase in the utilization of machine learning in security-sensitive and critical applications. However, it has recently been shown that a small and carefully crafted perturbation in the input space can completely fool a deep model. In this study, we explore the extent to which face recognition systems are vulnerable to geometrically-perturbed adversarial faces. We propose a fast landmark manipulation method for generating adversarial faces, which is approximately 200 times faster than the previous geometric attacks and obtains 99.86% success rate on the state-of-the-art face recognition models. To further force the generated samples to be natural, we introduce a second attack constrained on the semantic structure of the face which has the half speed of the first attack with the success rate of 99.96%. Both attacks are extremely robust against the state-of-the-art defense methods with the success rate of equal or greater than 53.59%. Code is available at https://github.com/alldbi/FLM

63 citations


Cites background from "SmartBox: Benchmarking Adversarial ..."

  • ...However, the noisy structure of the perturbation makes these attacks vulnerable against conventional defense methods such as quantizing [18], smoothing [6] or training on adversarial examples [30]....

    [...]

Proceedings ArticleDOI
01 Oct 2018
TL;DR: A simple but efficient approach based on pixel values and Principal Component Analysis as features coupled with a Support Vector Machine as the classifier, to detect image-agnostic universal perturbations.
Abstract: High performance of deep neural network based systems have attracted many applications in object recognition and face recognition. However, researchers have also demonstrated them to be highly sensitive to adversarial perturbation and hence, tend to be unreliable and lack robustness. While most of the research on adversarial perturbation focuses on image specific attacks, recently, image-agnostic Universal perturbations are proposed which learn the adversarial pattern over training distribution and have broader impact on real-world security applications. Such adversarial attacks can have compounding effect on face recognition where these visually imperceptible attacks can cause mismatches. To defend against adversarial attacks, sophisticated detection approaches are prevalent but most of the existing approaches do not focus on image-agnostic attacks. In this paper, we present a simple but efficient approach based on pixel values and Principal Component Analysis as features coupled with a Support Vector Machine as the classifier, to detect image-agnostic universal perturbations. We also present evaluation metrics, namely adversarial perturbation class classification error rate, original class classification error rate, and average classification error rate, to estimate the performance of adversarial perturbation detection algorithms. The experimental results on multiple databases and different DNN architectures show that it is indeed not required to build complex detection algorithms; rather simpler approaches can yield higher detection rates and lower error rates for image agnostic adversarial perturbation.

54 citations


Cites background from "SmartBox: Benchmarking Adversarial ..."

  • ...[10] have developed a toolbox containing various algorithm corresponds to adversarial generation, detection, and mitigation....

    [...]

Journal ArticleDOI
03 Apr 2020
TL;DR: Different ways in which the robustness of a face recognition algorithm is challenged, which can severely affect its intended working are summarized.
Abstract: Face recognition algorithms have demonstrated very high recognition performance, suggesting suitability for real world applications Despite the enhanced accuracies, robustness of these algorithms against attacks and bias has been challenged This paper summarizes different ways in which the robustness of a face recognition algorithm is challenged, which can severely affect its intended working Different types of attacks such as physical presentation attacks, disguise/makeup, digital adversarial attacks, and morphing/tampering using GANs have been discussed We also present a discussion on the effect of bias on face recognition models and showcase that factors such as age and gender variations affect the performance of modern algorithms The paper also presents the potential reasons for these challenges and some of the future research directions for increasing the robustness of face recognition models

53 citations


Cites background or methods from "SmartBox: Benchmarking Adversarial ..."

  • ...Further, Goel et al. (2018) developed the first benchmark toolbox of algorithms for adversarial generation, detection, and mitigation for face recognition....

    [...]

  • ...t the attacks performed using image-agnostic perturbations (i.e., one noise across multiple images) can be detected using a computationally efficient algorithm based on the data distribution. Further, Goel et al. (2018) developed the first benchmark toolbox of algorithms for adversarial generation, detection, and mitigation for face recognition. Recently, Goel et al. (2019) presented one of the best security mechanis...

    [...]

References
More filters
Posted Content
TL;DR: This work studies the adversarial robustness of neural networks through the lens of robust optimization, and suggests the notion of security against a first-order adversary as a natural and broad security guarantee.
Abstract: Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples---inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. Code and pre-trained models are available at this https URL and this https URL.

5,789 citations


"SmartBox: Benchmarking Adversarial ..." refers background in this paper

  • ...While whitebox attacks such as ElasticNet (EAD) [6], DeepFool [28], L2 [5], Fast Gradient Sign Method (FGSM) [15], Projective Gradient Descent (PGD) [26], and MI-FGSM [10] have complete access and information about the trained network, blackbox attacks such as one pixel attack [32] and universal perturbations [27] have no information about the trained Deep Neural Network (DNN)....

    [...]

  • ...While whitebox attacks such as ElasticNet (EAD) [6], DeepFool [28], L2 [5], Fast Gradient Sign Method (FGSM) [15], Projective Gradient Descent (PGD) [26], and MI-FGSM [10] have complete access and information about the trained network, blackbox attacks such as one pixel attack [32] and universal perturbations [27]...

    [...]

Journal ArticleDOI
TL;DR: A generative appearance-based method for recognizing human faces under variation in lighting and viewpoint that exploits the fact that the set of images of an object in fixed pose but under all possible illumination conditions, is a convex cone in the space of images.
Abstract: We present a generative appearance-based method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a small number of training images of each face taken with different lighting directions, the shape and albedo of the face can be reconstructed. In turn, this reconstruction serves as a generative model that can be used to render (or synthesize) images of the face under novel poses and illumination conditions. The pose space is then sampled and, for each pose, the corresponding illumination cone is approximated by a low-dimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated illumination cone. Test results show that the method performs almost without error, except on the most extreme lighting directions.

5,027 citations


"SmartBox: Benchmarking Adversarial ..." refers background or methods in this paper

  • ...On the extended Yale B database [13] [21] attack Generation results are summarized in Table 2....

    [...]

  • ...Experiments were conducted on the Extended Yale face Database B [13] [21]....

    [...]

Proceedings ArticleDOI
27 Jun 2016
TL;DR: DeepFool as discussed by the authors proposes the DeepFool algorithm to efficiently compute perturbations that fool deep networks, and thus reliably quantify the robustness of these classifiers by making them more robust.
Abstract: State-of-the-art deep neural networks have achieved impressive results on many image classification tasks. However, these same architectures have been shown to be unstable to small, well sought, perturbations of the images. Despite the importance of this phenomenon, no effective methods have been proposed to accurately compute the robustness of state-of-the-art deep classifiers to such perturbations on large-scale datasets. In this paper, we fill this gap and propose the DeepFool algorithm to efficiently compute perturbations that fool deep networks, and thus reliably quantify the robustness of these classifiers. Extensive experimental results show that our approach outperforms recent methods in the task of computing adversarial perturbations and making classifiers more robust.1

4,505 citations

Proceedings Article
15 Feb 2018
TL;DR: This article studied the adversarial robustness of neural networks through the lens of robust optimization and identified methods for both training and attacking neural networks that are reliable and, in a certain sense, universal.
Abstract: Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples—inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. Code and pre-trained models are available at this https URL and this https URL.

3,581 citations

Journal ArticleDOI
TL;DR: This paper shows how to arrange physical lighting so that the acquired images of each object can be directly used as the basis vectors of a low-dimensional linear space and that this subspace is close to those acquired by the other methods.
Abstract: Previous work has demonstrated that the image variation of many objects (human faces in particular) under variable lighting can be effectively modeled by low-dimensional linear spaces, even when there are multiple light sources and shadowing. Basis images spanning this space are usually obtained in one of three ways: a large set of images of the object under different lighting conditions is acquired, and principal component analysis (PCA) is used to estimate a subspace. Alternatively, synthetic images are rendered from a 3D model (perhaps reconstructed from images) under point sources and, again, PCA is used to estimate a subspace. Finally, images rendered from a 3D model under diffuse lighting based on spherical harmonics are directly used as basis images. In this paper, we show how to arrange physical lighting so that the acquired images of each object can be directly used as the basis vectors of a low-dimensional linear space and that this subspace is close to those acquired by the other methods. More specifically, there exist configurations of k point light source directions, with k typically ranging from 5 to 9, such that, by taking k images of an object under these single sources, the resulting subspace is an effective representation for recognition under a wide range of lighting conditions. Since the subspace is generated directly from real images, potentially complex and/or brittle intermediate steps such as 3D reconstruction can be completely avoided; nor is it necessary to acquire large numbers of training images or to physically construct complex diffuse (harmonic) light fields. We validate the use of subspaces constructed in this fashion within the context of face recognition.

2,472 citations


"SmartBox: Benchmarking Adversarial ..." refers background or methods in this paper

  • ...On the extended Yale B database [13] [21] attack Generation results are summarized in Table 2....

    [...]

  • ...Experiments were conducted on the Extended Yale face Database B [13] [21]....

    [...]