scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Snakes, shapes, and gradient vector flow

01 Mar 1998-IEEE Transactions on Image Processing (IEEE Trans Image Process)-Vol. 7, Iss: 3, pp 359-369
TL;DR: This paper presents a new external force for active contours, which is computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived from the image, and has a large capture range and is able to move snakes into boundary concavities.
Abstract: Snakes, or active contours, are used extensively in computer vision and image processing applications, particularly to locate object boundaries. Problems associated with initialization and poor convergence to boundary concavities, however, have limited their utility. This paper presents a new external force for active contours, largely solving both problems. This external force, which we call gradient vector flow (GVF), is computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived from the image. It differs fundamentally from traditional snake external forces in that it cannot be written as the negative gradient of a potential function, and the corresponding snake is formulated directly from a force balance condition rather than a variational formulation. Using several two-dimensional (2-D) examples and one three-dimensional (3-D) example, we show that GVF has a large capture range and is able to move snakes into boundary concavities.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets is proposed, which can detect objects whose boundaries are not necessarily defined by the gradient.
Abstract: We propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by the gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We give a numerical algorithm using finite differences. Finally, we present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.

10,404 citations


Cites background from "Snakes, shapes, and gradient vector..."

  • ...Other related works are [29], [10], [26], and [24] on active contours and segmentation, [28] and [11] on shape reconstruction from unorganized points, and finally the recent works [20] and [21], where a probability based geodesic active region model combined with classical gradient based active contour techniques is proposed....

    [...]

Journal ArticleDOI
TL;DR: A critical appraisal of the current status of semi-automated and automated methods for the segmentation of anatomical medical images is presented, with an emphasis on the advantages and disadvantages of these methods for medical imaging applications.
Abstract: ▪ Abstract Image segmentation plays a crucial role in many medical-imaging applications, by automating or facilitating the delineation of anatomical structures and other regions of interest. We present a critical appraisal of the current status of semiautomated and automated methods for the segmentation of anatomical medical images. Terminology and important issues in image segmentation are first presented. Current segmentation approaches are then reviewed with an emphasis on the advantages and disadvantages of these methods for medical imaging applications. We conclude with a discussion on the future of image segmentation methods in biomedical research.

2,230 citations

Journal ArticleDOI
TL;DR: The rapidly expanding body of work on the development and application of deformable models to problems of fundamental importance in medical image analysis, including segmentation, shape representation, matching and motion tracking is reviewed.

2,222 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: A new variational formulation for geometric active contours that forces the level set function to be close to a signed distance function, and therefore completely eliminates the need of the costly re-initialization procedure.
Abstract: In this paper, we present a new variational formulation for geometric active contours that forces the level set function to be close to a signed distance function, and therefore completely eliminates the need of the costly re-initialization procedure. Our variational formulation consists of an internal energy term that penalizes the deviation of the level set function from a signed distance function, and an external energy term that drives the motion of the zero level set toward the desired image features, such as object boundaries. The resulting evolution of the level set function is the gradient flow that minimizes the overall energy functional. The proposed variational level set formulation has three main advantages over the traditional level set formulations. First, a significantly larger time step can be used for numerically solving the evolution partial differential equation, and therefore speeds up the curve evolution. Second, the level set function can be initialized with general functions that are more efficient to construct and easier to use in practice than the widely used signed distance function. Third, the level set evolution in our formulation can be easily implemented by simple finite difference scheme and is computationally more efficient. The proposed algorithm has been applied to both simulated and real images with promising results.

2,005 citations


Cites background from "Snakes, shapes, and gradient vector..."

  • ...In particular, the parametric active contours [1, 2] are represented explicitly as parameterized curves in a Lagrangian framework, while the geometric active contours [5–7] are represented implicitly as level sets of a two-dimensional function that evolves in an Eulerian framework....

    [...]

Journal ArticleDOI
TL;DR: A new variational level set formulation in which the regularity of the level set function is intrinsically maintained during thelevel set evolution called distance regularized level set evolution (DRLSE), which eliminates the need for reinitialization and thereby avoids its induced numerical errors.
Abstract: Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.

1,947 citations


Cites background from "Snakes, shapes, and gradient vector..."

  • ...A desirable advantage of level set methods is that they can represent contours of complex topology and are able to handle topological changes, such as splitting and merging, in a natural and efficient way, which is not allowed in parametric active contour models [6], [8], [9] unless extra indirect procedures are introduced in the implementations....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This work uses snakes for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest, and uses scale-space continuation to enlarge the capture region surrounding a feature.
Abstract: A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We have used snakes successfully for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest.

18,095 citations

Book
01 Jan 1937

11,054 citations

Journal ArticleDOI
TL;DR: In this paper, a method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image, and an iterative implementation is shown which successfully computes the Optical Flow for a number of synthetic image sequences.

10,727 citations

Book
03 Oct 1988
TL;DR: This chapter discusses two Dimensional Systems and Mathematical Preliminaries and their applications in Image Analysis and Computer Vision, as well as image reconstruction from Projections and image enhancement.
Abstract: Introduction. 1. Two Dimensional Systems and Mathematical Preliminaries. 2. Image Perception. 3. Image Sampling and Quantization. 4. Image Transforms. 5. Image Representation by Stochastic Models. 6. Image Enhancement. 7. Image Filtering and Restoration. 8. Image Analysis and Computer Vision. 9. Image Reconstruction From Projections. 10. Image Data Compression.

8,504 citations