scispace - formally typeset
Search or ask a question
Posted Content

Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks.

TL;DR: In this paper, a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people, and predicts socially plausible future by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss.
Abstract: Understanding human motion behavior is critical for autonomous moving platforms (like self-driving cars and social robots) if they are to navigate human-centric environments. This is challenging because human motion is inherently multimodal: given a history of human motion paths, there are many socially plausible ways that people could move in the future. We tackle this problem by combining tools from sequence prediction and generative adversarial networks: a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people. We predict socially plausible futures by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss. Through experiments on several datasets we demonstrate that our approach outperforms prior work in terms of accuracy, variety, collision avoidance, and computational complexity.
Citations
More filters
Proceedings ArticleDOI
15 Jun 2019
TL;DR: Argoverse includes sensor data collected by a fleet of autonomous vehicles in Pittsburgh and Miami as well as 3D tracking annotations, 300k extracted interesting vehicle trajectories, and rich semantic maps, which contain rich geometric and semantic metadata which are not currently available in any public dataset.
Abstract: We present Argoverse, a dataset designed to support autonomous vehicle perception tasks including 3D tracking and motion forecasting. Argoverse includes sensor data collected by a fleet of autonomous vehicles in Pittsburgh and Miami as well as 3D tracking annotations, 300k extracted interesting vehicle trajectories, and rich semantic maps. The sensor data consists of 360 degree images from 7 cameras with overlapping fields of view, forward-facing stereo imagery, 3D point clouds from long range LiDAR, and 6-DOF pose. Our 290km of mapped lanes contain rich geometric and semantic metadata which are not currently available in any public dataset. All data is released under a Creative Commons license at Argoverse.org. In baseline experiments, we use map information such as lane direction, driveable area, and ground height to improve the accuracy of 3D object tracking. We use 3D object tracking to mine for more than 300k interesting vehicle trajectories to create a trajectory forecasting benchmark. Motion forecasting experiments ranging in complexity from classical methods (k-NN) to LSTMs demonstrate that using detailed vector maps with lane-level information substantially reduces prediction error. Our tracking and forecasting experiments represent only a superficial exploration of the potential of rich maps in robotic perception. We hope that Argoverse will enable the research community to explore these problems in greater depth.

950 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: To move towards cognition-level understanding, a new reasoning engine is presented, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning.
Abstract: Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people's actions, goals, and mental states. While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world. We formalize this task as Visual Commonsense Reasoning. Given a challenging question about an image, a machine must answer correctly and then provide a rationale justifying its answer. Next, we introduce a new dataset, VCR, consisting of 290k multiple choice QA problems derived from 110k movie scenes. The key recipe for generating non-trivial and high-quality problems at scale is Adversarial Matching, a new approach to transform rich annotations into multiple choice questions with minimal bias. Experimental results show that while humans find VCR easy (over 90% accuracy), state-of-the-art vision models struggle (~45%). To move towards cognition-level understanding, we present a new reasoning engine, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning. R2C helps narrow the gap between humans and machines (~65%); still, the challenge is far from solved, and we provide analysis that suggests avenues for future work.

687 citations

Journal ArticleDOI
TL;DR: In this article, the ability of intelligent autonomous systems to perceive, understand, and anticipate human behavior becomes increasingly important in a growing number of intelligent systems in human environments, and the ability to do so is discussed.
Abstract: With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand, and anticipate human behavior becomes increasingly important. Spec...

547 citations

Proceedings ArticleDOI
Huang Yingfan1, Huikun Bi1, Zhaoxin Li1, Tianlu Mao1, Zhaoqi Wang1 
01 Oct 2019
TL;DR: This work proposes a Spatial-Temporal Graph Attention network (STGAT), based on a sequence-to-sequence architecture to predict future trajectories of pedestrians, which achieves superior performance on two publicly available crowd datasets and produces more "socially" plausible trajectories for pedestrians.
Abstract: Human trajectory prediction is challenging and critical in various applications (e.g., autonomous vehicles and social robots). Because of the continuity and foresight of the pedestrian movements, the moving pedestrians in crowded spaces will consider both spatial and temporal interactions to avoid future collisions. However, most of the existing methods ignore the temporal correlations of interactions with other pedestrians involved in a scene. In this work, we propose a Spatial-Temporal Graph Attention network (STGAT), based on a sequence-to-sequence architecture to predict future trajectories of pedestrians. Besides the spatial interactions captured by the graph attention mechanism at each time-step, we adopt an extra LSTM to encode the temporal correlations of interactions. Through comparisons with state-of-the-art methods, our model achieves superior performance on two publicly available crowd datasets (ETH and UCY) and produces more "socially" plausible trajectories for pedestrians.

369 citations

Posted Content
TL;DR: The complete state-of-the-art techniques in the action recognition and prediction are surveyed, including existing models, popular algorithms, technical difficulties, popular action databases, evaluation protocols, and promising future directions are provided.
Abstract: Derived from rapid advances in computer vision and machine learning, video analysis tasks have been moving from inferring the present state to predicting the future state. Vision-based action recognition and prediction from videos are such tasks, where action recognition is to infer human actions (present state) based upon complete action executions, and action prediction to predict human actions (future state) based upon incomplete action executions. These two tasks have become particularly prevalent topics recently because of their explosively emerging real-world applications, such as visual surveillance, autonomous driving vehicle, entertainment, and video retrieval, etc. Many attempts have been devoted in the last a few decades in order to build a robust and effective framework for action recognition and prediction. In this paper, we survey the complete state-of-the-art techniques in the action recognition and prediction. Existing models, popular algorithms, technical difficulties, popular action databases, evaluation protocols, and promising future directions are also provided with systematic discussions.

351 citations

References
More filters
Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Journal ArticleDOI
08 Dec 2014
TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to ½ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

38,211 citations

Posted Content
TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

23,486 citations

Proceedings Article
01 Jan 2014
TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Abstract: How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.

20,769 citations

Posted Content
TL;DR: Conditional Adversarial Network (CA) as discussed by the authors is a general-purpose solution to image-to-image translation problems, which can be used to synthesize photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Indeed, since the release of the pix2pix software associated with this paper, a large number of internet users (many of them artists) have posted their own experiments with our system, further demonstrating its wide applicability and ease of adoption without the need for parameter tweaking. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without hand-engineering our loss functions either.

11,127 citations