scispace - formally typeset
Journal ArticleDOI: 10.1080/10253890.2020.1777976

Social isolation in mice: behavior, immunity, and tumor growth.

04 Mar 2021-Stress (Taylor & Francis)-Vol. 24, Iss: 2, pp 229-238
Abstract: The aim of this study was to investigate the behavioral, immunological, and neurological effects of long-term isolation in an animal model. Male C3H/eB mice wereraised in either social isolation or...

... read more

Topics: Social isolation (50%)
Citations
  More

5 results found


Open accessJournal ArticleDOI: 10.3390/DIAGNOSTICS11010123
14 Jan 2021-
Abstract: Depression is apparently the most common psychiatric disease among the mood disorders affecting about 10% of the adult population. The etiology and pathogenesis of depression are still poorly understood. Hence, as for most human diseases, animal models can help us understand the pathogenesis of depression and, more importantly, may facilitate the search for therapy. In this review we first describe the more common tests used for the evaluation of depressive-like symptoms in rodents. Then we describe different models of depression and discuss their strengths and weaknesses. These models can be divided into several categories: genetic models, models induced by mental acute and chronic stressful situations caused by environmental manipulations (i.e., learned helplessness in rats/mice), models induced by changes in brain neuro-transmitters or by specific brain injuries and models induced by pharmacological tools. In spite of the fact that none of the models completely resembles human depression, most animal models are relevant since they mimic many of the features observed in the human situation and may serve as a powerful tool for the study of the etiology, pathogenesis and treatment of depression, especially since only few patients respond to acute treatment. Relevance increases by the fact that human depression also has different facets and many possible etiologies and therapies.

... read more

9 Citations


Open accessJournal ArticleDOI: 10.3390/IJMS22136998
Chitose Orikasa1Institutions (1)
Abstract: Parental behaviour is a comprehensive set of neural responses to social cues. The neural circuits that govern parental behaviour reside in several putative nuclei in the brain. Melanin concentrating hormone (MCH), a neuromodulator that integrates physiological functions, has been confirmed to be involved in parental behaviour, particularly in crouching behaviour during nursing. Abolishing MCH neurons in innate MCH knockout males promotes infanticide in virgin male mice. To understand the mechanism and function of neural networks underlying parental care and aggression against pups, it is essential to understand the basic organisation and function of the involved nuclei. This review presents newly discovered aspects of neural circuits within the hypothalamus that regulate parental behaviours.

... read more


Open accessJournal ArticleDOI: 10.1016/J.BBR.2021.113630
Abstract: Social isolation gained discussion momentum due to the COVID-19 pandemic. Whereas many studies address the effects of long-term social isolation in post-weaning and adolescence and for periods ranging from 4-12 weeks, little is known about the repercussions of adult long-term social isolation in middle age. Thus, our aim was to investigate how long-term social isolation can influence metabolic, behavioural, and central nervous system-related areas in middle-aged mice. Adult male C57Bl/6 mice (4 months-old) were randomly divided into Social (2 cages, n = 5/cage) and Isolated (10 cages, n = 1/cage) housing groups, totalizing 30 weeks of social isolation, which ended concomitantly with the onset of middle age of mice. At the end of the trial, metabolic parameters, short-term memory, anxiety-like behaviour, and physical activity were assessed. Immunohistochemistry in the hippocampus (ΔFosB, BDNF , and 8OHDG) and hypothalamus (ΔFosB) was also performed. The Isolated group showed impaired memory along with a decrease in hippocampal ΔFosB at dentate gyrus and in BDNF at CA3. Food intake was also affected, but the direction depended on how it was measured in the Social group (individually or in the group) with no alteration in ΔFosB at the hypothalamus. Physical activity parameters increased with chronic isolation, but in the light cycle (inactive phase), with some evidence of anxiety-like behaviour. Future studies should better explore the timepoint at which the alterations found begin. In conclusion, long-term social isolation in adult mice contributes to alterations in feeding, physical activity pattern, and anxiety-like behaviour. Moreover, short-term memory deficit was associated with lower levels of hippocampal ΔFosB and BDNF in middle age.

... read more

Topics: Social isolation (53%), Dentate gyrus (50%)

Open accessJournal ArticleDOI: 10.3390/IJMS22179598
Olga Abramova, Yana Zorkina, Timur Syunyakov, E. A. Zubkov  +7 moreInstitutions (2)
Abstract: Background: Molecular mechanisms of depression remain unclear. The brain metabolome after antidepressant therapy is poorly understood and had not been performed for different routes of drug administration before the present study. Rats were exposed to chronic ultrasound stress and treated with intranasal and intraperitoneal clomipramine. We then analyzed 28 metabolites in the frontal cortex and hippocampus. Methods: Rats’ behavior was identified in such tests: social interaction, sucrose preference, forced swim, and Morris water maze. Metabolic analysis was performed with liquid chromatography. Results: After ultrasound stress pronounced depressive-like behavior, clomipramine had an equally antidepressant effect after intranasal and intraperitoneal administration on behavior. Ultrasound stress contributed to changes of the metabolomic pathways associated with pathophysiology of depression. Clomipramine affected global metabolome in frontal cortex and hippocampus in a different way that depended on the route of administration. Intranasal route was associated with more significant changes of metabolites composition in the frontal cortex compared to the control and ultrasound groups while the intraperitoneal route corresponded with more profound changes in hippocampal metabolome compared to other groups. Since far metabolic processes in the brain can change in many ways depending on different routes of administration, the antidepressant therapy should also be evaluated from this point of view.

... read more

Topics: Clomipramine (54%), Metabolome (51%), Morris water navigation task (51%)

Open accessJournal ArticleDOI: 10.3390/CELLS10112974
01 Nov 2021-Cells
Abstract: Aging is the result of the deterioration of the homeostatic systems (nervous, endocrine, and immune systems), which preserve the organism’s health. We propose that the age-related impairment of these systems is due to the establishment of a chronic oxidative stress situation that leads to low-grade chronic inflammation throughout the immune system’s activity. It is known that the immune system weakens with age, which increases morbidity and mortality. In this context, we describe how the function of immune cells can be used as an indicator of the rate of aging of an individual. In addition to this passive role as a marker, we describe how the immune system can work as a driver of aging by amplifying the oxidative-inflammatory stress associated with aging (oxi-inflamm-aging) and inducing senescence in far tissue cells. Further supporting our theory, we discuss how certain lifestyle conditions (such as social environment, nutrition, or exercise) can have an impact on longevity by affecting the oxidative and inflammatory state of immune cells, regulating immunosenescence and its contribution to oxi-inflamm-aging.

... read more

Topics: Immunosenescence (63%), Senescence (56%), Immune system (55%) ... show more
References
  More

47 results found


Journal ArticleDOI: 10.1126/SCIENCE.7233204
05 Jun 1981-Science
Abstract: Emotional, psychosocial, or anxiety-stimulated stress produces increased plasma concentrations of adrenal corticoids and other hormones though well-known neuroendocrine pathways. A direct consequence of these increased corticoid concentrations is injury to elements of the immunological apparatus, which may leve the subject vulnerable to the action of latent oncogenic viruses, newly transformed cancer cells, or other incipient pathological processes that are normally held in check by an intact immunological apparatus. This article describes studies that examine the adverse effects of increased plasma concentrations of adrenal corticoids on the thymus and thymus-dependent T cells, inasmuch as these elements constitute a major defense system against various neoplastic processes and other pathologies. The studies demonstrate that anxiety-stress can be quantitatively induced and the consequences measured through specific biochemical and cellular parameters, providing that authentic quiescent baselines of these conditions are obtained in the experimental animals by the use of low-stress protective housing and handling techniques.

... read more

749 Citations


Open accessJournal ArticleDOI: 10.1159/000216188
Firdaus S. Dhabhar1Institutions (1)
Abstract: Stress is known to suppress immune function and increase susceptibility to infections and cancer. Paradoxically, stress is also known to exacerbate asthma, and allergic, autoimmune and inflammatory diseases, although such diseases should be ameliorated by immunosuppression. Moreover, the short-term fight-or-flight stress response is one of nature's fundamental defense mechanisms that enables the cardiovascular and musculoskeletal systems to promote survival, and it is unlikely that this response would suppress immune function at a time when it is most required for survival (e.g. in response to wounding and infection by a predator or aggressor). These observations suggest that stress may suppress immune function under some conditions while enhancing it under others. The effects of stress are likely to be beneficial or harmful depending on the type (immunoprotective, immunoregulatory/inhibitory, or immunopathological) of immune response that is affected. Studies have shown that several critical factors influence the direction (enhancing vs. suppressive) of the effects of stress or stress hormones on immune function: (1) Duration (acute vs. chronic) of stress: Acute or short-term stress experienced at the time of immune activation can enhance innate and adaptive immune responses. Chronic or long-term stress can suppress immunity by decreasing immune cell numbers and function and/or increasing active immunosuppressive mechanisms (e.g. regulatory T cells). Chronic stress can also dysregulate immune function by promoting proinflammatory and type-2 cytokine-driven responses. (2) Effects of stress on leukocyte distribution: Compartments that are enriched with immune cells during acute stress show immunoenhancement, while those that are depleted of leukocytes, show immunosuppression. (3) The differential effects of physiologic versus pharmacologic concentrations of glucocorticoids, and the differential effects of endogenous versus synthetic glucocorticoids: Endogenous hormones in physiological concentrations can have immunoenhancing effects. Endogenous hormones at pharmacologic concentrations, and synthetic hormones, are immunosuppressive. (4) The timing of stressor or stress hormone exposure relative to the time of activation and time course of the immune response: Immunoenhancement is observed when acute stress is experienced at early stages of immune activation, while immunosuppression may be observed at late stages of the immune response. We propose that it is important to study and, if possible, to clinically harness the immunoenhancing effects of the acute stress response, that evolution has finely sculpted as a survival mechanism, just as we study its maladaptive ramifications (chronic stress) that evolution has yet to resolve. In view of the ubiquitous nature of stress and its significant effects on immunoprotection as well as immunopathology, it is important to further elucidate the mechanisms mediating stress-immune interactions and to meaningfully translate findings from bench to bedside.

... read more

Topics: Chronic stress (60%), Immune system (57%), Immunopathology (55%) ... show more

640 Citations


Journal ArticleDOI: 10.1007/S12026-014-8517-0
Firdaus S. Dhabhar1Institutions (1)
Abstract: Although the concept of stress has earned a bad reputation, it is important to recognize that the adaptive purpose of a physiological stress response is to promote survival during fight or flight. While long-term stress is generally harmful, short-term stress can be protective as it prepares the organism to deal with challenges. This review discusses the immune effects of biological stress responses that can be induced by psychological, physiological, or physical (including exercise) stressors. We have proposed that short-term stress is one of the nature's fundamental but under-appreciated survival mechanisms that could be clinically harnessed to enhance immunoprotection. Short-term (i.e., lasting for minutes to hours) stress experienced during immune activation enhances innate/primary and adaptive/secondary immune responses. Mechanisms of immuno-enhancement include changes in dendritic cell, neutrophil, macrophage, and lymphocyte trafficking, maturation, and function as well as local and systemic production of cytokines. In contrast, long-term stress suppresses or dysregulates innate and adaptive immune responses by altering the Type 1-Type 2 cytokine balance, inducing low-grade chronic inflammation, and suppressing numbers, trafficking, and function of immunoprotective cells. Chronic stress may also increase susceptibility to some types of cancer by suppressing Type 1 cytokines and protective T cells and increasing regulatory/suppressor T cell function. Here, we classify immune responses as being protective, pathological, or regulatory, and discuss "good" versus "bad" effects of stress on health. Thus, short-term stress can enhance the acquisition and/or expression of immunoprotective (wound healing, vaccination, anti-infectious agent, anti-tumor) or immuno-pathological (pro-inflammatory, autoimmune) responses. In contrast, chronic stress can suppress protective immune responses and/or exacerbate pathological immune responses. Studies such as the ones discussed here could provide mechanistic targets and conceptual frameworks for pharmacological and/or biobehavioral interventions designed to enhance the effects of "good" stress, minimize the effects of "bad" stress, and maximally promote health and healing.

... read more

Topics: Chronic stress (55%), Immune system (53%), Psychoneuroimmunology (52%) ... show more

581 Citations


Open accessJournal ArticleDOI: 10.31887/DCNS.2011.13.2/JSHERIN
Abstract: The classic fight-or-flight response to perceived threat is a reflexive nervous phenomenon thai has obvious survival advantages in evolutionary terms. However, the systems that organize the constellation of reflexive survival behaviors following exposure to perceived threat can under some circumstances become dysregulated in the process. Chronic dysregulation of these systems can lead to functional impairment in certain individuals who become "psychologically traumatized" and suffer from post-traumatic stress disorder (PTSD), A body of data accumulated over several decades has demonstrated neurobiological abnormalities in PTSD patients. Some of these findings offer insight into the pathophysiology of PTSD as well as the biological vulnerability of certain populations to develop PTSD, Several pathological features found in PTSD patients overlap with features found in patients with traumatic brain injury paralleling the shared signs and symptoms of these clinical syndromes.

... read more

Topics: Psychological trauma (55%), Traumatic stress (55%), Poison control (50%)

414 Citations


Journal ArticleDOI: 10.1111/J.1460-9568.2004.03587.X
Abstract: The importance of environment in the regulation of brain, behaviour and physiology has long been recognized in biological, social and medical sciences. Animals maintained under enriched conditions have clearly been shown to have better learning abilities than those maintained under standard conditions. However, the effects of environmental enrichment (EE) on immunity and emotionality have been less documented and remain questionable. Therefore, we investigated the effect of EE on natural killer (NK) cell activity, psychological stress responses and behavioural parameters. Male C3H mice were housed either in enriched or standard conditions for 6 weeks. Behaviour was then examined by the grip-strength test, staircase and elevated plus maze, and corticosterone levels and NK cell activity were measured. Furthermore, animals exposed to the stress paradigm, achieved by electric shock with reminders, were tested for freezing time in each reminder. Corticosterone levels were also measured. The EE mice showed decreased anxiety-like behaviour and higher activity compared to standard mice, as revealed by a greater percentage of time spent in the open arms of the elevated plus maze, and a higher rate of climbing the staircase. A shorter freezing time in the stress paradigm and no corticosterone level reactivity were measured in EE mice. In addition, NK cell activity in spleens of EE mice was higher than that demonstrated in those of standard mice. Thus, EE has a beneficial effect on anxiety-like behaviour, stress response and NK cell activity. The effect on NK cell activity is promising, due to the role of NK cells in host resistance.

... read more

Topics: Elevated plus maze (52%)

367 Citations