scispace - formally typeset

Book

Social Network Analysis: Methods and Applications

25 Nov 1994-

TL;DR: This paper presents mathematical representation of social networks in the social and behavioral sciences through the lens of Dyadic and Triadic Interaction Models, which describes the relationships between actor and group measures and the structure of networks.
Abstract: Part I. Introduction: Networks, Relations, and Structure: 1. Relations and networks in the social and behavioral sciences 2. Social network data: collection and application Part II. Mathematical Representations of Social Networks: 3. Notation 4. Graphs and matrixes Part III. Structural and Locational Properties: 5. Centrality, prestige, and related actor and group measures 6. Structural balance, clusterability, and transitivity 7. Cohesive subgroups 8. Affiliations, co-memberships, and overlapping subgroups Part IV. Roles and Positions: 9. Structural equivalence 10. Blockmodels 11. Relational algebras 12. Network positions and roles Part V. Dyadic and Triadic Methods: 13. Dyads 14. Triads Part VI. Statistical Dyadic Interaction Models: 15. Statistical analysis of single relational networks 16. Stochastic blockmodels and goodness-of-fit indices Part VII. Epilogue: 17. Future directions.
Topics: Dyadic interaction (59%), Social network (56%), Triadic closure (53%), Centrality (52%), Organizational network analysis (52%)
Citations
More filters

Journal ArticleDOI
Duncan J. Watts1, Steven H. Strogatz1Institutions (1)
04 Jun 1998-Nature
TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Abstract: Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

35,972 citations


Cites background from "Social Network Analysis: Methods an..."

  • ...The graph of film actors is a surrogate for a social networ...

    [...]


Book
Jiawei Han1, Micheline Kamber2, Jian Pei2Institutions (2)
08 Sep 2000-
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,590 citations


Journal ArticleDOI
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

17,463 citations


Journal ArticleDOI
Janine Nahapiet1, Sumantra Ghoshal2Institutions (2)
Abstract: Scholars of the theory of the firm have begun to emphasize the sources and conditions of what has been described as “the organizational advantage,” rather than focus on the causes and consequences of market failure. Typically, researchers see such organizational advantage as accruing from the particular capabilities organizations have for creating and sharing knowledge. In this article we seek to contribute to this body of work by developing the following arguments: (1) social capital facilitates the creation of new intellectual capital; (2) organizations, as institutional settings, are conducive to the development of high levels of social capital; and (3) it is because of their more dense social capital that firms, within certain limits, have an advantage over markets in creating and sharing intellectual capital. We present a model that incorporates this overall argument in the form of a series of hypothesized relationships between different dimensions of social capital and the main mechanisms and proces...

14,279 citations


Cites background from "Social Network Analysis: Methods an..."

  • ...Among the most important facets of this dimension are the presence or absence of network ties between actors (Scott, 1991; Wasserman & Faust, 1994); network configuration (Krackhardt, 1989) or morphology (Tichy, Tushman, & Fombrun, 1979) describing the pattern of linkages in terms of such measures…...

    [...]


Journal ArticleDOI
Edward T. Bullmore1, Olaf Sporns2Institutions (2)
TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Abstract: Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.

8,306 citations


Network Information
Related Papers (5)
04 Jun 1998, Nature

Duncan J. Watts, Steven H. Strogatz

15 Oct 1999, Science

Albert-László Barabási, Réka Albert

01 Aug 2001, Review of Sociology

Miller McPherson, Lynn Smith-Lovin +1 more

Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
202223
2021666
2020778
2019796
2018751
2017903