scispace - formally typeset
Search or ask a question
Book

Social Network Analysis: Methods and Applications

TL;DR: This paper presents mathematical representation of social networks in the social and behavioral sciences through the lens of Dyadic and Triadic Interaction Models, which describes the relationships between actor and group measures and the structure of networks.
Abstract: Part I. Introduction: Networks, Relations, and Structure: 1. Relations and networks in the social and behavioral sciences 2. Social network data: collection and application Part II. Mathematical Representations of Social Networks: 3. Notation 4. Graphs and matrixes Part III. Structural and Locational Properties: 5. Centrality, prestige, and related actor and group measures 6. Structural balance, clusterability, and transitivity 7. Cohesive subgroups 8. Affiliations, co-memberships, and overlapping subgroups Part IV. Roles and Positions: 9. Structural equivalence 10. Blockmodels 11. Relational algebras 12. Network positions and roles Part V. Dyadic and Triadic Methods: 13. Dyads 14. Triads Part VI. Statistical Dyadic Interaction Models: 15. Statistical analysis of single relational networks 16. Stochastic blockmodels and goodness-of-fit indices Part VII. Epilogue: 17. Future directions.
Citations
More filters
Journal ArticleDOI
TL;DR: It is proposed that social cohesion around a relationship affects the willingness and motivation of individuals to invest time, energy, and effort in sharing knowledge with others and that the network range, ties to different knowledge pools, increases a person's ability to convey complex ideas to heterogeneous audiences.
Abstract: This research considers how different features of informal networks affect knowledge transfer. As a complement to previous research that has emphasized the dyadic tie strength component of informal...

3,319 citations

Proceedings ArticleDOI
24 Oct 2007
TL;DR: This paper examines data gathered from four popular online social networks: Flickr, YouTube, LiveJournal, and Orkut, and reports that the indegree of user nodes tends to match the outdegree; the networks contain a densely connected core of high-degree nodes; and that this core links small groups of strongly clustered, low-degree node at the fringes of the network.
Abstract: Online social networking sites like Orkut, YouTube, and Flickr are among the most popular sites on the Internet. Users of these sites form a social network, which provides a powerful means of sharing, organizing, and finding content and contacts. The popularity of these sites provides an opportunity to study the characteristics of online social network graphs at large scale. Understanding these graphs is important, both to improve current systems and to design new applications of online social networks.This paper presents a large-scale measurement study and analysis of the structure of multiple online social networks. We examine data gathered from four popular online social networks: Flickr, YouTube, LiveJournal, and Orkut. We crawled the publicly accessible user links on each site, obtaining a large portion of each social network's graph. Our data set contains over 11.3 million users and 328 million links. We believe that this is the first study to examine multiple online social networks at scale.Our results confirm the power-law, small-world, and scale-free properties of online social networks. We observe that the indegree of user nodes tends to match the outdegree; that the networks contain a densely connected core of high-degree nodes; and that this core links small groups of strongly clustered, low-degree nodes at the fringes of the network. Finally, we discuss the implications of these structural properties for the design of social network based systems.

3,266 citations

Journal ArticleDOI
TL;DR: Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach to combining first-order logic and probabilistic graphical models in a single representation.
Abstract: We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a first-order formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudo-likelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach.

2,916 citations

Journal ArticleDOI
TL;DR: In this paper, three basic models or forms of network governance are developed focusing on their distinct structural properties and the tensions inherent in each form are discussed, followed by the role that management may play in addressing these tensions.
Abstract: This article examines the governance of organizational networks and the impact of governance on network effectiveness. Three basic models, or forms, of network governance are developed focusing on their distinct structural properties. Propositions are formulated examining conditions for the effectiveness of each form. The tensions inherent in each form are then discussed, followed by the role that management may play in addressing these tensions. Finally, the evolution of governance is explored.

2,891 citations


Cites background from "Social Network Analysis: Methods an..."

  • ...concepts as density, centrality, and structural holes (Burt, 1992; Wasserman and Faust, 1994 )....

    [...]

  • ...Scholars have contributed especially to the description and explanation of network structural characteristics using such concepts as density, centrality, and structural holes (Burt 1992; Wasserman and Faust 1994)....

    [...]

Proceedings ArticleDOI
26 Aug 2001
TL;DR: It is proposed to model also the customer's network value: the expected profit from sales to other customers she may influence to buy, the customers those may influence, and so on recursively, taking advantage of the availability of large relevant databases.
Abstract: One of the major applications of data mining is in helping companies determine which potential customers to market to. If the expected profit from a customer is greater than the cost of marketing to her, the marketing action for that customer is executed. So far, work in this area has considered only the intrinsic value of the customer (i.e, the expected profit from sales to her). We propose to model also the customer's network value: the expected profit from sales to other customers she may influence to buy, the customers those may influence, and so on recursively. Instead of viewing a market as a set of independent entities, we view it as a social network and model it as a Markov random field. We show the advantages of this approach using a social network mined from a collaborative filtering database. Marketing that exploits the network value of customers---also known as viral marketing---can be extremely effective, but is still a black art. Our work can be viewed as a step towards providing a more solid foundation for it, taking advantage of the availability of large relevant databases.

2,886 citations