scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of recent advances in carbon nanotube (CNT)-based electrode materials, including cathode materials and anode materials for SIBs, and strategies to improve their electrochemical performance are discussed.

53 citations

Journal ArticleDOI
TL;DR: The computations revealed that M adsorbed FeSe (M = Li, Na and K) systems show metallic characteristics that give rise to good electrical conductivity and mobility with low activation energies for diffusion, indicative of a fast charge/discharge rate.
Abstract: By means of density functional theory computations, we explored the electrochemical performance of an FeSe monolayer as an anode material for lithium and non-lithium ion batteries (LIBs and NLIBs). The electronic structure, adsorption, diffusion, and storage behavior of different metal atoms (M) in FeSe were systematically investigated. Our computations revealed that M adsorbed FeSe (M = Li, Na and K) systems show metallic characteristics that give rise to good electrical conductivity and mobility with low activation energies for diffusion (0.16, 0.13 and 0.11 eV for Li, Na, and K, respectively) of electrons and metal atoms in the materials, indicative of a fast charge/discharge rate. In addition, the theoretical capacities of the FeSe monolayer for Li, Na and K can reach up to 658, 473, and 315 mA h g−1, respectively, higher than that of commercial graphite (372 mA h g−1 for Li, 284 mA h g−1 for Na, and 273 mA h g−1 for K), and the average open-circuit voltage is moderate (0.38–0.88 V for Li, Na and K). All these characteristics suggest that the FeSe monolayer is a potential anode material for alkali-metal rechargeable batteries.

52 citations

Journal ArticleDOI
TL;DR: In this paper, a series of N, S-co-doped hierarchical porous carbon materials are designed and prepared through an easy one-pot ionothermal approach, and the carbon structure is controlled by designing the precursors and changing the reaction temperature.
Abstract: Engineering the structure and increasing the near-surface reaction of hard carbon are promising strategies for designing high-performance sodium ion batteries (SIBs). In this study, a series of N, S-co-doped hierarchical porous carbon materials are designed and prepared through an easy one-pot ionothermal approach. The carbon structure is controlled by designing the precursors and changing the reaction temperature. Benefiting from a molecular-engineering strategy, the obtained porous carbon shows a homogeneous distribution of nitrogen and sulfur atoms at the atomic level, and its application as anode materials for SIBs is reported. pTTPN@600 delivers a high reversible capacity (134 mA h g−1 at 1 A g−1, corresponding to a capacity retention of 88.7% after 100 cycles and excellent rate capabilities of 248 mA h g−1 at 0.05 A g−1 and 95 mA h g−1 at 5 A g−1). Even at a current density of 10 A g−1, a specific capacity of 74 mA h g−1 is maintained after 2000 cycles. The outstanding performance is attributed to the large amount of heteroatoms (N 7.52 wt% and S 1.63 wt%) and several mesopores (mesoporous volume 0.48 cm3 g−1) in pTTPN@600. We propose increasing the mesoporous volume and heteroatom amount to enhance the electrochemical performance of porous carbon materials. This study provides an easy route to fabricate hierarchical porous electrode materials for SIBs and provides new insights into the sodium storage behavior in hierarchical porous materials.

52 citations

Journal ArticleDOI
TL;DR: In this paper, a novel copper doped layered P_1 manganese-based oxide material (NCM) with unique bulk and nanoscale Na-free surface structures as a sodium host was presented.

52 citations

Journal ArticleDOI
TL;DR: MoSe2/NPr as discussed by the authors is a P-doped rGO composites for active anodes for rechargeable sodium-ion batteries, which achieves a capacity of 337 mA h g−1 after 100 cycles and 244.4 mA Hg−1 at 1 A g− 1.
Abstract: The renewable energy revolution and its practical applications demand the need for large solar storage options. Lithium-ion batteries may remain top in terms of their utilization and performance, however their cost-per-kWh impacts their usage, and researchers prefer to stick to sodium-ion chemistry as a large storage option. One of the main research topics for rechargeable sodium-ion batteries is in proposing new anodes, since the commercial graphite anode is incompatible for use in SIBs as its larger radius (0.98 A vs. 0.69 A of Li+) leads to sluggish Na-ion transport during the cycling process. Our team is continuously working on the development of chalcogenide-based anodes for use in sodium-ion batteries and their reaction mechanisms. In this work, we prepared MoSe2 and MoSe2-N, P-doped rGO composites (with the latter denoted as MoSe2/NPr) as active anodes for use in sodium-ion batteries. The morphology and electrochemical properties of MoSe2/NPr were characterised and compared with those of the bare MoSe2 electrode. The MoSe2/NPr composite delivers a capacity of 337 mA h g−1 at 0.1 A g−1 after 100 cycles and 244.4 mA h g−1 at 1 A g−1; these values are higher than those of MoSe2/rGO (225.6 mA h g−1 at 0.1 A g−1) and MoSe2 electrodes (206 mA h g−1 at 0.1 A g−1). The excellent performance of MoSe2/NPr is attributed to the interconnected doped rGO sheets that provide sufficient active sites for MoSe2 with improved conductivity and reduced volume expansion during the cycling process. In addition, the sodium storage mechanism is investigated by several ex situ physical and microscopic studies.

52 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations