scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
17 Jan 2018-Joule
TL;DR: Suss et al. as discussed by the authors developed a next-generation electrochemical system for energy storage and water desalination applications at the Technion-Israel Institute of Technology (Technion).

210 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive study regarding anode materials is reported focusing on storage mechanism and structural changes involved during storage of Na ions in various classes of anode material including carbon-based materials, conversion, conversion/alloying and organic materials.
Abstract: With the rapid expansion in energy demands and depletion of fossil fuel reservoirs, the importance of clean energy production and storage has increased drastically. The renewable energy recourses are cost effective, sustainable and carbon dioxide emission free alternatives. Nevertheless, this energy is not always available and needs to be stored. Lithium ion batteries (LIBs) are rapidly used in various applications such as powering electronics, electric vehicles and grid energy storage. However, the increasing concerns regarding load leveling of renewable energy and rise in cost of LIBs due to limited availability of lithium reserves arises doubts whether LIBs alone can meet the rising demands for mid-to-large-scale energy storage. Therefore, attention has been shifted towards development of sodium ion batteries (SIBs) which have wide reserves and low precursor cost and thus is considered as appropriate choice for solar and wind energy development. The prime problem encountered in development of large-scale SIBs is the low effectiveness of appropriate anode material because of large size and sluggish kinetics of Na ions. A comprehensive study regarding anode materials is reported focusing on storage mechanism and structural changes involved during storage of Na ions in various classes of anode materials including carbon-based materials, conversion, conversion/alloying and organic materials. A brief overview of various components of SIBs such as cathode, electrolyte and separator are also discussed.

210 citations

Journal ArticleDOI
Yongxin Huang1, Luzi Zhao1, Li Li1, Man Xie1, Feng Wu1, Renjie Chen1 
TL;DR: Current efforts in modifying electrolytes to optimize their interfacial compatibility with electrodes, leading to longer battery lifetimes and greater safety, are described and directions for developing next-generation SIBs are suggested.
Abstract: Sodium-ion batteries (SIBs) have drawn considerable interest as power-storage devices owing to the wide abundance of their constituents and low cost. To realize a high performance-price ratio, the cathode and anode materials must be optimized. As essential components of SIBs, electrolytes should have wide electrochemical windows, high thermal stability, and exceptional ionic conductivity. Therefore, improved electrolytes, based on various materials and compositions, are developed to meet the practical demands of SIBs, including organic electrolytes, ionic liquids, aqueous, solid electrolytes, and hybrid electrolytes. Although mature organic electrolytes are currently used in production, aqueous and solid electrolytes show advantages for future applications, as discussed here in detail. Current efforts in modifying electrolytes to optimize their interfacial compatibility with electrodes, leading to longer battery lifetimes and greater safety, are described. The advanced characterization techniques used to investigate the properties of electrolytes and interfaces are introduced, and the reaction processes and degradation mechanisms of SIBs are revealed. Furthermore, the practical prospects of SIBs promoted by high-quality electrolytes appropriately matched with electrodes are predicted and directions for developing next-generation SIBs are suggested.

210 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent progress in the use of 2D active materials and in composites consisting of both 2D supports and active materials as anodes for SIBs is presented.
Abstract: Sodium-ion batteries (SIBs) have attracted great attention recently due to the abundance of sodium resources, particularly for large-scale electric energy storage applications for renewable energy and smart grids. More and more nanostructured anode materials have been developed with the aims of high energy density, high cycling stability, and excellent rate capability, in which two-dimensional (2D) nanostructures are showing promise due to their shortened paths for sodium ion transportation and larger surface areas for sodium ion absorption. Moreover, 2D materials (e.g. graphene) have been proved to be excellent supporting and conducting agents in SIB anodes due to their high electrical conductivity and structural stability, in which synergetic effects between the graphene and the active materials are generally observed. This review is devoted to the recent progress in the use of 2D active materials and in composites consisting of both 2D supports and active materials as anodes for SIBs. Based on the manner of sodium storage, their electrochemical performance for sodium storage is discussed in terms of four classifications, including carbonaceous materials (graphene and carbon nanosheets), alloy based materials (Sn, Sb, and P), conversion materials (phosphides/oxides/sulfides/selenides), and intercalation materials (Ti-based compounds). Finally, the main challenges for and perspectives on 2D nanostructures for sodium storage are discussed.

209 citations

Journal ArticleDOI
TL;DR: An ideal anode material, a metallic TiC3 monolayer with not only remarkably high storage capacity of 1278 mA h g-1 but also low barrier energy and open-circuit voltage, is identified through first-principles swarm-intelligence structure calculations.
Abstract: Sodium-ion batteries (SIBs) have attracted considerable attention due to the intrinsic safety and high abundance of sodium. However, the lack of high-performance anode materials becomes a main obstacle for the development of SIBs. Here, we identify an ideal anode material, a metallic TiC3 monolayer with not only remarkably high storage capacity of 1278 mA h g–1 but also low barrier energy and open-circuit voltage, through first-principles swarm-intelligence structure calculations. TiC3 still keeps metallic after adsorbing two-layer Na atoms, ensuring good electrical conductivity during the battery cycle. Besides, high melting point and superior dynamical stability are in favor of practical application. Its excellent performance can be mainly attributed to the presence of an unusual n-biphenyl unit in the TiC3 monolayer. High cohesive energy, originating from multibonding coexistence (e.g., covalent, ionic, and metal bonds) in the TiC3 monolayer, provides strong feasibility for experimental synthesis. In c...

208 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations