scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the emerging nano-and microscopic carbon species with special morphology/textures and currently available types of chemical activation agents, and novel activation strategy to enhance electrochemical performance of activated carbon material in electrical energy storage devices including supercapacitor and alkaline ions batteries.

45 citations

Journal ArticleDOI
23 Jul 2020-ACS Nano
TL;DR: The potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn-air and Na-ion batteries are demonstrated and the bifunctional electrocatalytic property and sodium storage performance are demonstrated.
Abstract: Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phase and structure. Here, we report a colloidal strategy to fabricate FeCo-based bimetallic sulfides on reduced graphene oxide (rGO), which are expected to display highly efficient oxygen electrocatalysis and sodium storage performances. Specifically, as-screened FeCo8S8 nanosheets (NSs) on rGO originating from suitable tailoring of the Co9S8 matrix with Fe at the atomic level exhibited a very low potential difference (0.77 V) at 10 mA cm-2 and negligible voltage loss after 200 cycles as an air electrode for Zn-air batteries. For Na-ion batteries, FeCo8S8 NS/rGO demonstrated a superior high-rate capability (188 mAh g-1 at 20 A g-1) with long-term cycling stability. The bifunctional electrocatalytic property and sodium storage performance are attributed to not only the synergistic effect of Fe/Co but also the optimized catalytic activity and ion transport ability by the in situ rGO hybrid. This work demonstrates the potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn-air and Na-ion batteries.

45 citations

Journal ArticleDOI
30 Nov 2018
TL;DR: In this paper, a comprehensive review of the latest advancements in cathode materials for non-aqueous KIBs in terms of capacity, cycle life and energy density is presented, as well as K-storage mechanisms.
Abstract: Rechargeable potassium-ion batteries (KIBs) are potential alternatives to lithium-ion batteries for application in large-scale energy storage systems due to their inexpensive and highly abundant resources Recently, various anode materials have been investigated for use in KIBs, especially the traditional graphite anodes which have already been successfully applied in KIBs In contrast, the appropriate cathode materials which are able to accommodate large K ions are urgently needed In this review, a comprehensive summary of the latest advancements in cathode materials for non-aqueous KIBs in terms of capacity, cycle life and energy density will be presented, as well as K-storage mechanisms In addition, various strategies to improve K-storage performance will be provided through combining insights from the study of material structures and properties and thus bring low-cost non-aqueous KIBs a step closer to application in sustainable large-scale energy storage systems

45 citations

Journal ArticleDOI
TL;DR: In this article, a bipolar and self-polymerized Cu phthalocyanine (CuTAPc) was used as an electrode material for sodium-based dual-ion batteries.

45 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the recent progress of fullerene-based materials in the field of rechargeable batteries and the key issues that need to be solved in the future application of the material.

45 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations