scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a dopamine-derived carbon-coated ternary germanium oxide, Zn 2 GeO 4 @C with micron-rod morphology, is successfully synthesized by a facile hydrothermal method and its sodium storage behavior is examined between 0.01 and 3.0 V.

43 citations

Journal ArticleDOI
TL;DR: In this paper, uniform Co9S8 hollow boxes with double open ends have been fabricated by a facile technique involving a solvothermal and subsequent calcination process on the basis of a time-de...
Abstract: Herein, uniform Co9S8 hollow boxes (Co9S8-HB) with double open ends have been fabricated by a facile technique involving a solvothermal and subsequent calcination process. On the basis of a time-de...

43 citations

Journal ArticleDOI
Lishuang Xia1, Zhendong Yang1, Bin Tang1, Feng Li1, Jinping Wei1, Zhen Zhou1 
01 Jan 2021-Small
TL;DR: In this paper, homogeneous Sb2 Se3 nanocrystallites embedded in carbon nanofibers by electrospinning and selenization treatment are prepared, which exhibit good cycling performance, high reversible capacity, and excellent rate capability as anodes for SIBs.
Abstract: As a promising candidate for large-scale energy storage, sodium-ion batteries (SIBs) have superiority due to their low cost and abundance as a resource. Herein, homogeneous Sb2 Se3 nanocrystallites embedded in carbon nanofibers (Sb2 Se3 /CNFs) by electrospinning and selenization treatment are prepared. The obtained Sb2 Se3 /CNFs exhibit good cycling performance, high reversible capacity, and excellent rate capability as anodes for SIBs. The outstanding performances are attributed to a combination of Na+ intercalation, conversion reaction, and alloying with Sb2 Se3 , disclosed through in-situ X-ray diffraction. Meanwhile, unique nanostructures provide large contact surface and tolerant accommodation to volume expansion which bring high reversibility and long cycle durability. This distinctive material shows prospective applications of SIBs especially under high current density.

43 citations

Journal ArticleDOI
TL;DR: A high-rate MnS-based anode is demonstrated by embedding the MnS nanocrystals into the N, S-co-doped carbon matrix (MnS@NSC), enabling its comparable fast reaction kinetics and cyclability with NC cathode.
Abstract: Sodium-ion capacitors (SICs) have received increasing interest for grid stationary energy storage application due to their affordability, high power, and energy densities. The major challenge for SICs is to overcome the kinetics imbalance between faradaic anode and non-faradaic cathode. To boost the Na+ reaction kinetics, the present work demonstrated a high-rate MnS-based anode by embedding the MnS nanocrystals into the N, S-co-doped carbon matrix (MnS@NSC). Benefiting from the fast pseudocapacitive Na+ storage behavior, the resulting composite exhibits extraordinary rate capability (205.6 mAh g−1 at 10 A g−1) and outstanding cycling stability without notable degradation after 2000 cycles. A prototype SIC was demonstrated using MnS@NSC anode and N-doped porous carbon (NC) cathode; the obtained hybrid SIC device can display a high energy density of 139.8 Wh kg−1 and high power density of 11,500 W kg−1, as well as excellent cyclability with 84.5% capacitance retention after 3000 cycles. The superior electrochemical performance is contributed to downsizing of MnS and encapsulation of conductive N, S-co-doped carbon matrix, which not only promote the Na+ and electrons transport, but also buffer the volume variations and maintain the structure integrity during Na+ insertion/extraction, enabling its comparable fast reaction kinetics and cyclability with NC cathode.

43 citations

Journal ArticleDOI
TL;DR: In this article, the potential of borophene as an anode material in sodium-ion batteries was investigated, and first-principles calculations and ab initio molecular dynamics simulations were carried out.
Abstract: Two-dimensional boron synthesized by the chemical vapor deposition method is an atomically thin layer of boron with both light weight and metallicity. To investigate the potential of borophene as an anode material in sodium-ion batteries, first-principles calculations and ab initio molecular dynamics simulations were carried out. The calculated results reveal that after introducing vacancy defects, the special puckered structure becomes relatively flat and the metallic nature of the defective borophene is enhanced, while the defects in borophene can weaken sodium adsorption. A single sodium atom is preferentially absorbed on the BV site. The adsorption energies gradually reduce with an increase in sodium concentration due to the increased Na–Na repulsion. The fully sodium storage phase of borophene corresponds to NaB2 with a theoretical specific capacity of 1240 mA h g−1, which is much larger than that of other two-dimensional materials. Most interestingly, sodium ion flows in the furrows of puckered borophene are extremely fast with a low energy barrier of 30 meV. Meanwhile, sodium diffusion on borophene was found to be highly anisotropic, as further verified by the results of the ab initio molecular dynamics simulations. The sodiated-borophene nanostructure shows enhanced electronic conductivity during the whole sodiation process, which is superior to other anode materials. Borophene is expected to be a promising candidate with high capacity and high rate capability for anode materials in sodium-ion batteries.

43 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations