scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

35 citations

Journal ArticleDOI
TL;DR: Amin et al. as mentioned in this paper summarized recent progress in pseudo-solid-state electrolytes utilizing ionic liquids, highlighting their fundamental properties while elaborating expedient design strategies, and provided an insight into their properties to inspire far-reaching exploration into their material characteristics and functionalities.
Abstract: The advent of solid-state electrolytes has unearthed a new paradigm of next-generation batteries endowed with improved electrochemical properties and exceptional safety. Amongst them, Li-stuffed garnet type oxides, sulfides, and NASICON type solid-state electrolytes have emerged with fascinating ionic conductivity, electrochemical stability, and high safety standards, besides creating an avenue for using metal anodes to maximize energy density. However, the actual performance of solid-state electrolytes is heavily encumbered by unexpected metal dendrite formation and typically manifests high resistances between the metal electrodes/solid-state electrolytes or grain boundaries, thereby restricting their practical applications. Recent studies have reported several novel approaches, such as modifying solid-state electrolytes using ionic liquids to form the so-called “pseudo-solid-state electrolytes”. This class of electrolytes encompassing materials such as ionogel using ionic liquids and ionic plastic crystals has been gaining rekindled interest for their unique properties that promise great strides in battery performance and diversified utility. This minireview paper summarizes recent progress in pseudo-solid-state electrolytes utilizing ionic liquids, highlighting their fundamental properties while elaborating expedient design strategies. The realistic prospects and future challenges associated with developing pseudo-solid-state electrolyte materials present an insight into their properties to inspire far-reaching exploration into their material characteristics and functionalities.

35 citations

Journal ArticleDOI
23 Feb 2021
TL;DR: In this article, the major challenges in CNT-metal systems that impede their application in electronic devices and highlight significant breakthroughs are reviewed, focusing on the interfacial interaction and materials science aspects of carbon nanotubes-metal structures.
Abstract: Next-generation electronics can no longer solely rely on conventional materials; miniaturization of portable electronics is pushing Si-based semiconductors and metallic conductors to their operational limits, flexible displays will make common conductive metal oxide materials obsolete, and weight reduction requirement in the aerospace industry demands scientists to seek reliable low-density conductors. Excellent electrical and mechanical properties, coupled with low density, make carbon nanotubes (CNTs) attractive candidates for future electronics. However, translating these remarkable properties into commercial macroscale applications has been disappointing. To fully realize their great potential, CNTs need to be seamlessly incorporated into metallic structures or have to synergistically work alongside them which is still challenging. Here, we review the major challenges in CNT–metal systems that impede their application in electronic devices and highlight significant breakthroughs. A few key applications that can capitalize on CNT–metal structures are also discussed. We specifically focus on the interfacial interaction and materials science aspects of CNT–metal structures.

35 citations

Journal ArticleDOI
TL;DR: In this article, a pre-intercalated hydrated V2O5 was used as a cathode material for SIBs, and the results showed that the Y 0·02V 2O5 sample exhibits much enhanced cycling stability, higher Na+ diffusion coefficient, lower electrochemical reaction resistance, and improved rate capability compared to the pure V 2 O5 counterpart.

35 citations

Journal ArticleDOI
TL;DR: Sodium-ion capacitors (SICs) have attracted growing attention since they can combine the advantages of sodium-ion batteries (SIBs) and electrochemical capacitors simultaneously as mentioned in this paper.
Abstract: Sodium-ion capacitors (SICs) have attracted growing attention since they can combine the advantages of sodium-ion batteries (SIBs) and electrochemical capacitors simultaneously. The key point of co...

35 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations