scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, an integrated strategy of MgO coating and Mg2+ doping to improve the electrochemical properties of Na0.67Mn0.5O2 was reported.

33 citations

Journal ArticleDOI
05 Feb 2020
TL;DR: In this paper, a stable electrode based on micro-truss structures (MTs) was proposed for the first time, and the key to this strategy is to engrave precursors with a truss structure by using an anti-reduction agent (Fe3+ ions), and a subsequent recrystallization process reinforces the truss structures.
Abstract: Summary The practical application of transition metal sulfides as anodes for sodium-ion batteries has long been hindered by the design and fabrication of stable electrodes. Here, inspired by architecture, we design a stable electrode based on Cu1.81S micro-truss structures (MTs) for the first time. The key to this “selective reduction” strategy is to engrave Cu1.75S precursors with a truss structure by using an anti-reduction agent (Fe3+ ions), and a subsequent recrystallization process reinforces the truss structure. The Cu1.81S MTs with high structural stability exhibits a pronounced stability enhancement for 1,000 cycles with 77.7% capacity retention and delivers excellent rate performance of 331 mAh g−1 at 3 A g−1. As a new method for designing robust electrode structures, this synthetic strategy is not limited to the synthesis of truss structures. It provides new insights into a new generation of electrode structures and could be applied to the structural design of other batteries.

33 citations

Journal ArticleDOI
TL;DR:
Abstract: Organic electrode materials have shown potential for rechargeable batteries because they are environmentally friendly, earth-abundant sources, recyclable, high sustainable, designable, flexible, and lightweight. However, low electrical conductivity and dissolution in organic liquid electrolytes hinder their further development. Herein, MXene/organics heterostructures are designed to address the problems of organic electrodes via a scalable and simple electrostatic self-assembly strategy. Under the effect of the electrostatic interaction, organic cathode material, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), is tightly attached to MXene nanosheets. Owing to the high electronic conductivity and special two-dimensional (2D) structure of MXene nanosheets, the issues of PTCDA cathode are effectively relieved. When applied in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), the MXene@PTCDA heterostructure exhibits significantly enhanced rate capability and cycling performance than bare PTCDA. The heterostructures proposed here can be applied to other (K, Zn, Al, Mg, Ca, etc.) battery systems. In addition to energy storage and conversion, the heterostructures can be also extended to many fields such as catalysis, sensors, electronics, optics, membranes, semiconductors, biomedicines, etc.

33 citations

Journal ArticleDOI
TL;DR: In this paper, a tubular SnO2@TiO2 core-shell nanocomposites were designed and synthesized for the first time to inhibit the volume change of SNO2 during de-sodiation process, thus greatly improving its cyclic stability.

33 citations

Journal ArticleDOI
TL;DR: In this paper, a simple and scalable synthesis of MnSe2 nanocubes as the Na-ion battery anode materials was reported, which achieved a four-electron reaction with an enhanced reversible capacity of 249 mAhg−1 at 0.1 ǫ Aǫ g−1 and 90.8% capacity retention after 100 cycles.

33 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations