scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of 2D carbon materials and their architectures for Na and K-ion batteries through an in-depth analysis of structure-property interdependence and different electrochemical mechanisms supported by both experimental and theoretical data is discussed.

31 citations

Journal ArticleDOI
TL;DR: This nanocomposite exhibits stable and fast Na+ storage, thus leading to excellent rate capability and cyclability, and Pseudocapacitive behavior is found to dominate in the redox reactions, accounting for the outstanding rate and cycling performance.
Abstract: A mesoporous graphitic carbon-encapsulated Fe2 O3 nanocomposite is synthesized as a superior anode material for sodium-ion batteries. A threefold strategy is adopted to achieve a high rate performance. First, the mesoporous structure with high specific surface area and large pore volume facilitates the transfer of electrolyte and accommodates the large volume change. Secondly, graphitic carbon encapsulation further improves the electronic conductivity of the nanocomposite. Finally, ultrafine Fe2 O3 nanocrystals effectively shorten the Na+ diffusion length. Consequently, this nanocomposite exhibits stable and fast Na+ storage, thus leading to excellent rate capability and cyclability. Pseudocapacitive behavior is found to dominate in the redox reactions, accounting for the outstanding rate and cycling performance. In addition, full cells, assembled with O3-Na0.9 [Cu0.22 Fe0.30 Mn0.48 ]O2 as cathodes, present good electrochemical performance.

31 citations

Journal ArticleDOI
TL;DR: The composite materials with RGO decorated Sb2S3 nanorods have been fabricated via a facile two-step process and utilized as anode materials for sodium-ion batteries.

31 citations

Journal ArticleDOI
TL;DR: Benefiting from the Ni intercalated bilayer SnS2, the internal adjustment of electronic state and the enlarged interlayer spacing significantly enhanced electron transport kinetics, which can be explained by the metallic state related properties.
Abstract: Metallic-state 2D SnS2 nanosheets with expanded lattice spacing and a defect-rich structure were synthesized by the intercalation of Ni into the van der Waals gap of SnS2 . The expanded lattice spacing efficiently enhanced the electrochemical performance of the SnS2 for sodium-ion batteries owing to the change electron state density and energy band structure. In operando synchrotron XRD and theoretical calculations were used to gain insight into the influence of foreign metal-ion doping and its location. The optimized architecture obtained by in situ uniform growth of nanosheets on carbon fibers significantly enhanced the electrochemical performance. The inherent advantages of this architecture are shorter paths for ion insertion and extraction, larger contact area for more sodium diffusion pathways, and superior electrolyte penetration. Benefiting from the Ni intercalated SnS2 bilayer, the internal adjustment of the electronic state and the enlarged interlayer spacing significantly enhanced the electron transport kinetics, which can be explained by the metallic-state properties. The integrated electrode exhibited an initial high reversible capacity of 795 mAh g-1 at 0.1 A g-1 , with a stable capacity retention of 666 mAh g-1 after 100 cycles. Good rate capability was also exhibited with specific capacities of 691, 564, 437 mAh g-1 at current densities of 200, 500, and 1000 mA g-1 , respectively.

31 citations

Journal ArticleDOI
02 Feb 2022-SmartMat
TL;DR: In this article , a review summarizes the research progress of metal-organic frameworks (MOFs) and their derivatives (vanadium oxides, carbon-coated vanadium oxide, vanadium phosphate, vanadate, and other vanadium doped nanomaterials) in electrochemical energy conversion (water splitting, oxygen reduction reaction) and energy storage (supercapacitor, rechargeable battery).
Abstract: With the excessive consumption of nonrenewable resources, the exploration of effective and durable materials is highly sought after in the field of sustainable energy conversion and storage system. In this aspect, metal‐organic frameworks (MOFs) are a new class of crystalline porous organic‐inorganic hybrid materials. MOFs have recently been gaining traction in energy‐related fields. Owing to the coordination flexibility and multiple accessible oxidation states of vanadium ions or clusters, vanadium‐MOFs (V‐MOFs) possess unique structural characteristics and satisfactory electrochemical properties. Furthermore, V‐MOFs‐derived materials also exhibit superior electrical conductivity and stability when used as electrocatalysts and electrode materials. This review summarizes the research progress of V‐MOFs (inclusive of pristine V‐MOFs, V/M‐MOFs, and POV‐based MOFs) and their derivatives (vanadium oxides, carbon‐coated vanadium oxide, vanadium phosphate, vanadate, and other vanadium doped nanomaterials) in electrochemical energy conversion (water splitting, oxygen reduction reaction) and energy storage (supercapacitor, rechargeable battery). Future possibilities and challenges for V‐MOFs and their derivatives in terms of design and synthesis are discussed. Lastly, their applications in energy‐related fields are also highlighted.

31 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations